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TFBS mutations with a cascading effect on miRNA-target expression

" Most somatic mutations are non-coding, a small fraction occurs at transcription factor binding sites (TFBSS).

" Interpretation of the effect of TFBS mutations can be eased by using expression data.

" Most of the known cancer drivers genes are protein-coding, but non-coding genes may also be cancer drivers.

* We mapped somatic mutations to TFBS with experimental and computational evidence derived from UniBind-*.

= Each TFBS was associated to its potential targets by combining the annotations from geneHancer? and
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TFBS within annotated regions (red box) are associated to genes according to
geneHancer, otherwise (blue box) they are associated to the closest TSS.

* We adapted xseq’, a bayesian probabilistic framework, to assess the likely association between

mutated miRNA-associated TFBSs with dysregulation (cascading effect) in miRNA networks.
3. Ding et al, Nat Commun 2015
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* We combined transcriptional (TFBS mutations) and post-transcriptional (mIRNA networks) information

4. Zhang et al, Database 2011

to highlight cancer driver miRNAs across 7 TCGA®* cohorts .

Dysregulated miRNA-target genes are enriched in key cancer pathways
Hsa-miR-29a-5p
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Associating mutations with gene dysregulation
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, we infer the reqgulatory status (down,neutral,up)

of each gene within a miRNA network.
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MIRNA X mutations are associated with
dysregulation in the network (Sample 1).
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Mutations In mMIRNAs X and Z, are
recurrently associated with dysregulation
across the cohort.
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For each cohort, we selected the miIRNAs with high Driver posterior For each mutated sample (columns), we selected The dysregulated miRNA-target genes are enriched in key
’ cancer pathways
probabillity. the dysregulated target genes (rows) of the P ys.

highlighted miRNAs.

Pan-cancer predicted cancer driver miRNAs
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Predicted cancer driver miRNAs are associated to prognosis

hsa-miR-145*

0.8 1.0
|

0.6

0.4

Breast cancer—specific survival
0.2

P-val : 8.53e-07

0.0
]

1.0

—— Below median —— Below median
—— Above median —— Above median

0.8
|

0.6

04

Breast cancer—specific survival
0.2

P—val : 1.76e-02

0.0
]

We predicted 38 miIRNAs in 7 TCGA cohorts. Three well known oncogenic miRNAs (miR-20a, miR-17, miR-
92a) were predicted independently in the 7 cohorts. All the predicted mIRNAs are annotated as cancer
MIRNAs in miRCancer.

Conclusions
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We used a third, Independent, breast cancer cohort (Metabric, n = 1282) to draw

the survival plots.

" By combining transcriptional and post-transcriptional information we highlighted potential cancer driver miRNAs (with mutations at their TFBSs) likely associated to a

cascading effect on the miRNA networks.

" Non-coding mutations coupled with gene expression can be explored to highlight cancer driver genes.
" The same methodology also works in TFBS mutations associated to protein coding genes, and could be adapted for other genes such as IncRNAs.
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