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ABSTRACT

Transcription factors binding motifs (TFBM) are classically represented either as consensus
strings (IUPAC, regular expressions), or as position-specific scoring matrices (PSSM).
Thousands of curated TFBM are available in specialized databases (JASPAR, RegulonDB,
TRANSFAC, etc), built from collections of transcription factor binding sites (TFBS) obtained
from various experimental methods (e.g. EMSA, DNAse footprinting, SELEX). TFBM can
also be discovered ab initio from genome-scale data sets: promoters of co-expressed genes,

ChIP-seq peaks, phylogenetic footprints, etc.

Motif collections sometimes contain groups of similar motifs, for different reasons: curation
of alternative motifs for a same TF; homologous proteins sharing a particular DNA binding
domain, motifs discovered with analytic workflows combining several algorithms (e.g. RSAT
peak-motifs, or MEME-chip). In order to address the increasing need for efficient tools
enabling to discover groups of similarities among motif collections, we developed

matrix-clustering, which presents significant advantages over existing solutions.

1) Segmentation of the input set of TFBM into separated clusters, displayed as a motif forest

rather than a single motif tree (alternative software tools force all motifs to be aligned).
2) Multiple alignment of all motifs belonging to a same cluster.
3) User-friendly display of motif trees with aligned logos and consensuses.

4) At each level of the hierarchical tree, computation of a merged motif (matrix and

consensus) summarizing all the descendant motifs.

5) Support for a large series of alternative metrics (correlation, Euclidian distance, SSD,

Sandelin-Wasserman, logo dot product, and length-normalized version of these scores).

6) Possibility to select a custom combination between these scores to compute an integrative

threshold.
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The potentialities of the tool are illustrated by study cases: clustering of matrices extracted
from ChIP-seq peaks using several motif discovery algorithms. Extraction of a motif-to-motif
network and clustering of all motifs from the JASPAR taxon-wise collections. The
significance of the clustering results is further assessed by analysing collections of
randomized matrices (column-permuted). In this negative control, most motifs are correctly

assigned to a singleton, except for low complexity motifs (e.g. AAAAAA).

We analyzed the effect of hierarchical clustering parameters (hierarchical agglomeration rule,
similarity metrics) on the number of clusters and on the relationships between motifs, and

identified suitable parameters to obtain relevant results.

Availability: matrix-clustering is available on the Regulatory Sequence Analysis Tools
(RSAT) Web site (RSAT; http://www.rsat.eu/). It can also be downloaded with the stand-alone
RSAT distribution to be run from the Unix shell.

4/29



INTRODUCTION

Gene expression is a process strongly regulated in the cell at different levels (transcription,
translation) by distinct molecules (proteins, RNAs). At transcriptional level, gene expression
can be driven by a set of proteins known as Transcription Factors (TFs) which act either as
activators or repressors of selected target genes by binding DNA in a sequence-specific
manner?, TFs have a DNA-binding domain in which a few amino acid residues interact via
weak bonds with specific nucleotides®*. The DNA sequences where a TF binds are denoted as

TF binding sites (TFBSs).

The TFBSs vary in width between 5-30 nucleotides long?. Although the TFBSs of a particular
TF are similar to each other, they are not identical: usually they have a few well-conserved

positions, whereas some other positions show residue variations between sites.

The study of TFs and their TFBSs has allowed the creation of transcriptional regulatory
networks and the discovery of which particular combination of TFs give rise to complex and

diverse biological processes as morphogenesis, cell differentiation, development, etc®?

(a) Binding sites
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2 A AACTOCTTT T T T A
3 T T CA CCATT T T C T A
4 A CTOCTA ATT T C T C T
5 A TATOCTTT T T T CTT
T cACOCTTT T T A T c
7 A A TTOCCATT T T A T A
A AACTCTTT T T T A
AT A CATT T A AT c
0 A c CcCTTTT T C C T
1T T cC T T T T T N NN NN
2 ¢ T CAACTTT T A ATTT
13 c a c c A TT T AT c
14 CA CCCOCTTT T T AT c
15 T T T T C T A T T T T T T T A
16 A A A cC AT T T T T T C
(b) Position Specific Scoring Matrix
A 7 4 4 2 8 0 O 2 7 0 2 4
c 2 2z 6 5 9 12 0 00 2 2 2 O
4 3 2 4 1 0 160 2 0 2 9
T 54 1 s 4 4 8 16160 169 6 11 5 -
(c) Consensus
d w h v y ¥ w T T T t w T k m
(d) '-°g° M01272 V$SOX2_Q6
£4
= C ,A e
e VN I
=1 o
05‘ - o @0 e ® o 2 = o _'«_f T 0 3

16 sites

Figure 1. Representations of TFBMs built from a collection of TFBSs. This
example is illustrated with the Sox2 motif from Transfac (M01272). (a) Alignment of
the 16 annotated TFBSs. (b) PSSM representation: each cell of the matrix indicates the
number of ocurrences of each nucleotide (row) on each column of the aligned sites. (c)
IUPAC representation of the degenerated consensus. (d) Logo representation.
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Transcription factor binding motifs (TFBM)

The fact that one TF could bind to a large set of similar (but slightly different) sequences
makes the searching of putative TFBSs a complex task’. It is specially important to find a
model that: (1) encompasses and represents all the already known TFBSs for a TF, (2) is
informative and useful to search for new TFBSs. To build the model it is required to collect
and align a sufficient number of TFBSs, in order to extract significant information about the
conserved and variable residues (Figure la). Such models summarizing the conserved and
variable residues among a collection of reference sites are named “transcription factor binding
motif” (TFBM). The most common representation modes for TFBM are based either on
character strings (strict consensus, [UPAC code, regular expressions) or on position-specific
scoring matrices (PSSMs). Figure 1 shows different ways to represent TFBMs using as

example the Sox2 TF.

String-based representations of TFBM

Consensus sequences can be represented either as regular expressions, or using the IUPAC
alphabet® to denote the combination of nucleotides at each position of the alignment (Figure
1b). Both methods enable to represent positions with variable residues. However, they do not
take into account the nucleotide frequency at each position of the alignment. For example, in
figure 1, the letter Y at the 6" position of the consensus means “C or T”, this is not
informative about the respective frequencies of these two residues in this column of the

aligned sites.

Position specific scoring matrices (PSSMs)

Position-specific scoring matrices’ indicate the number of occurrences of each residue (rows)
in each column of the aligned sites. This model captures the nucleotide variability and
conservation of a collection of TFBSs (Figure 1c). The PSSMs allow observe that many
positions of the alignment have higher frequency associated to a specific nucleotide. A
convenient way to provide a visual and intuitive representation of the PSSMs is the sequence
logo, which indicates the information content within each column of the matrix (Figure 1d).
Currently the PSSMs are the most extensively used computational method to search TFBSs in

a sequence’ because they take into account the differences of nucleotide composition between
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the TFBSs and the analyzed sequences, the search is supported by different statistical

approaches to validate the putative TFBSs.

Collections of reference position-specific scoring matrices

Several specialized databases provide PSSMs built from collections of TFBSs, for example
RegulonDB', JASPAR", TRANSFAC" , etc. The process to build PSSMs is generic and
automatized as part of analysis of biological sequences and in the study of TFs. Software
packages such as RSAT" or MEME suite', allow to build PSSMs from input sequences. This
task is relatively easy when we already know the TFBSs (e.g. collection of binding sites
characterized by gel shift or DNAse protection experiments), but becomes more complicated
when the precise TFBSs are not known, and we only dispose of a set of relatively large
sequences where a TF possibly binds (e.g. promoters of co-expressed genes). To address this
situation, one uses a bioinformatic approach known as de novo motif discovery, which
attempts to detect significant motifs'>'®'” (e.g. over-represented, or positionally biased) in a
set of sequences, and build PSSMs from them. This has been a fundamental problem in
computational biology since many years, and a variety of motif discovery algorithms have
been designed'®, for example, searching overrepresented oligonucleotides for monomeric TFs,
spaced oligonucleotides for dimeric TFs, positional distribution of sites inside the ChIP-seq

peaks, overrepresented words in windows of variable or fixed size, etc.

For the cases of high-throughput experiments (genomic Selex, ChIP-seq, microarrays) or
studies of conservation of cis-regulatory elements across species' de novo motif-discovery
tools have to analyze large sets varying from a few hundreds to severals tens of thousand
sequences. More than one algorithm can be is used®, complementing themselves for their
limitations: some of them find the motifs that others do not, but sometimes the same motifs
are found by more than one algorithm and hence they could be almost similar and hence
redundant with small variations in size and nucleotide frequencies at some positions. Once a
set motifs has been discovered, the user is confronted to the next question: do the different

motifs found correspond to known TFBMs ?
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Motifs comparison metrics

Actually this questions is one of the challenges on the field, many efforts have been done to
develop statistical methods and to find adequate metrics to compare the motifs, although there
are plenty of these metrics each one uses different statistical approaches, each one with its
own limitations. For these reason it must be mentioned that there is no a standard statistical
method neither a standard metric to measure the similarity between PSSMs, and this issue has
been discussed in several publications?'*'****, Currently there are at least 3 software tools
which measure the similarity between motifs, compare-matrices available in RSAT,

TomTom*'** in MEME suite and STAMP?Z.

The free software package RSAT" integrates a collection of tools for detection and analysis
of cis-regulatory elements in genomic sequencea. RSAT includes the program
compare-matrices which measures the similarity among a set of motifs against a plenty of
motifs databases. Unlike others motif comparison tools, it enables to compute several metrics
in the same analysis and then selects the best matches using rankings statistics on the
combined scores. A drawback is that the current version does not compute p-values on the

different scores.

Matching discovered motifs against reference databases is not the only challenge to compare
motifs. Another application is to regroup the redundant motifs discovered from the same
sequences. Both issues are faced, among others, by the tools******"* to analyze ChIP-seq
data. Some of these tools use many motif discovery variants to search exceptional motifs in
the peaks, after found the motifs the next step is motif comparison, but given the redundancy
in the found motifs, the results could be difficult to interpret. As part of motif analysis, it

should be useful to group similar motifs.

8/29



Objectives

Knowing either the value of similarity and the offset among all the pairs a of a set of motifs
could be useful information that can be integrated to group the motifs in clusters and align
them, this approach could have many applications for example: (1) it could help to
simplifying the interpretation of results, (2) to help to find compound-motifs, (3) to highlight

the common positions between a set of motifs®.

In order to address the increasing need for efficient tools enabling to discover groups of
similarities among motif collections, in this project it had been created the tool

matrix-clustering which is a tool that combines motif clustering and motif alignment.
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MATERIAL AND METHODS

Software tools

Motif comparison is done using the tool compare-matrices. The tool convert-matrix is used to
add empty columns on the flanks of PSSM in order to align them, to generate the logos
alignment, to change the orientation of the motifs, and to permute the columns of the matrices
for the negative control. The tool merge-matrices is used to create the merge-level matrices
and consensuses at each branch of the trees. These tools used in this work are available at

Regulatory Sequence Analysis Tools" (RSAT).

The logo trees is done with D3 which is a JavaScript library for manipulating documents

based on data (http://d3js.org/).

Motifs studied in study cases 1 and 2 were analyzed with STAMP?, a tool to cluster, compare

and align motifs.

Motif datasets

For the study case 1, I used a set of 21 motifs discovered from the peaks set of Oct4 ChIP-seq

from Chen et al® with the tool peak-motifs**.

For the study case 2, I used the non-redundant sets of insect and vertebrates core motifs from

the JASPAR'! database.

Implementation

matrix-clustering was implemented in PERL,R and the JavaScript library D3.
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RESULTS

Development of the software tool matrix-clustering

In this work I present a novel bioinformatic tool called matrix-clustering to face with one of
the current challenges in the analysis of cis-regulatory sequences: the clustering of motifs.
This tool is now functional and available on the Regulatory Sequence Analysis Tools"

(RSAT) Web site (http://www.rsat.eu/). It can also be downloaded with the stand-alone RSAT

distribution to be used on the Unix shell, alllowing to include it in automated pipelines.

Figure 2.  matrix-clustering
pipeline The figure shows the
pipeline from the input motifs and
parameters selected by the user to
the final output and the
interconnections  between  the
programs and files. Grey boxes

Input motifs

Metric selected
by the user

Comparison table

The dsancesare represent input/output files. Blue
e e e boxes represent software tools
I used in this algorithm. Green
boxes represent the user selection

parameters.

Distance table

Combination of
different metrics

Global tree

Cluster-wise
trees

Widely used format
to visualize
phylogenetic trees.

Phylogram

Multiple Alignment

Consensus
tree
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This tool takes as input a set of motifs (PSSMs), measures the similarity between each motif
pairs runs hierarchical clustering to group the similar motifs. The clusters are defined based
on one or more metrics selected by the user. Once the clusters are defined, they are displayed
in separated trees, which are used as guide trees to produce a progressive alignment of the
motifs. The result is displayed in different modes: logo phylogram, logo cladogram, and

consensus tree. Figure 2 shows the flowchart of the algorithm, which is explained below.

Input files
matrix-clustering takes as input a file with a set of motifs (several formats enabling to store

multiple PSSM in a file are supported: MEME, transfac, tab-delimited, etc).

Motif comparison

All the input motifs are compared each other using the program compare-matrices, which
computes the similarities using many metrics (correlation, Euclidian distance, SSD,
Sandelin-Wasserman, logo dot product, and length-normalized version of these scores). All
the pairwise comparisons are exported in a tab-delimited file, which can be accessed from the

matrix-clustering result page.

Distance calculation

Before the clustering step it is necessary select one of the supported metrics, which will be
used to build the motif-to-motif distance table. However some of the metrics supported by
compare-matrices measure a similarity (e.g. correlation, normalized correlation) whereas
others measure a distance (Euclidian, sum of squared deviations, Sandelin-Wasserman). Since
hierarchical clustering assumes a distance table as input, the values of the selected metric are
transformed into distance values and the resulting table with all the resulting distances among
each pair of the motifs is used for the hierarchical clustering step. This distance table is also

exported in the matrix-clustering results.

Hierarchical clustering

After having calculated the distance table between all the motifs, the hierarchical clustering
approach is applied to produce a global tree encompassing all input motifs. By default
matrix-clustering uses the average linkage method, but the user can select others (complete or
single linkage).
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The global tree is then partitioned by applying one or more user-selected thresholds to each
agglomeration step: if the nodes fail to satisfy any of the thresholds, a new cluster is created.
It must be noticed that the tree topology and number of clusters can change according to two
factors: 1) the merge method selected and 2) the metric selected to create the clusters (see

results below). At the end of this process the clusters are defined. This step is implemented in

R.

Progressive alignment

After having partitioned the global tree into clusters, the subtree corresponding to each cluster
is used as a guide to align the matrices at each agglomeration level of the tree. First, the
motifs (matrices) are orientated (forward or reverse) and then they are shifted by adding
empty columns (gaps) at the beginning or the end of the matrix. Note that this algorithm does
not add internal gaps, in contrast with STAMP, which uses dynamical programming and
allows to produce global or local alignments between matrices. The number of flanking gaps
added is recalculated on each step of the alignment. The criteria to align the motifs are the
same rules applied in the agglomeration steps of hierarchical clustering (average, complete,
single linkage). The result of this process is one global multiple alignment for each cluster,
unlike other algorithms where all the input motifs are forced to be aligned into a single
alignment. At the end of the analysis a dendrogram tree in PNG and PDF format is exported,
highlighting with different colors each cluster and their motifs with their aligned consensuses.
At the end of this step, matrix-clustering exports a tab-delimited file showing the alignment of

each cluster. This step is implemented in R.

Branch-wise matrices, logos and consensuses

During the agglomeration step of each cluster, once the motifs have been aligned and
extended to occupy the same width, matrix-clustering calculates a branch-wise matrix by
summing or averaging the frequencies of the aligned motifs at each level of the hierarchical
tree. The computation of branch-wise matrices is done with the program merge-matrix
implemented in Perl. These branch-wise matrices are then used to generate branch-wise
consensus and a branch-wise logo (using convert-matrix), which highlight the common
residues of the aligned motifs. As more branches are merged the resulting consensus will be
more similar to the consensuses of the descendant motifs. On the logo cladogram, internal
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nodes are labeled with consensuses, and clicking on a branch-wise consensus opens a link to

the corresponding branch-wise logo.

ITree export

The tree obtained with the hierarchical clustering approach can be converted and exported to

the newick format which is a widely used textual format to represent phylogenetic trees.

To show the logo alignments, for each cluster the trees obtained with the hierarchical
clustering approach are converted and exported to the JavaScript Object Notation (JSON)

format.

Phylogram

The program can take the tree in newick format to create a phylogram (i.e. a tree where the

branch lengths are scaled to reflect distances) using JavaScript.

Consensus alignment

Once the progressive alignment is done, matrix-clustering represents this alignment in two
versions, either as a consensus phylogram, or as a logo cladogram. For the consensus tree
both PNG and PDF files are exported. The gaps in this alignment are represented with '-' and
clusters are highlighted on the tree with different colors and numbers. In addition, each leaf of

this tree displays the motif ID and the strand. This step is implemented with R.

Logos alignment

For each cluster, a logo cladogram is displayed and beside each branch is displayed its own
logo aligned in both orientations with its own consensuses and IDs of the leaves. In this
alignment the gaps are represented by empty columns (filled with zeros) at the beginning
and/or at the end of the original logos of the motifs. This step is implemented with the

JavaScript library D3 and HTMLS.
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Evaluation of the matrix-clustering results and selection of relevant parameters

Case study 1: grouping redundant matrices resulting from multiple motif discovery tools

As a first study case, I evaluated the capability of matrix-clustering to identify groups of

2029 which runs

similar motifs within a set of matrices resulting from the program peak-motifs
four complementary motif discovery algorithms to detect exceptional motifs within the peaks.
Each algorithm complements the limitation of the others, sometimes similar motifs are found
by more than one algorithm with small differences in width or nucleotide frequencies at some

positions, resulting in a redundant motif set. The aim of this example is to demonstrate how a

set of motifs can be grouped and aligned to facilitate its interpretation.

Oct4 (Pou5fl) is an essential TF in cell fate decision, ES cells and early embryonic
development, it binds the canonical sequence 5'-ATGCAAAT-3'". In ES cells, Oct4 often
interacts with another TF, Sox2, which binds to an adjacent Sox motif 5'-CATTGTA-3.
Together, both TFs co-regulate specific genes®*. During the analysis of Oct4 or Sox2 binding
peaks, the so-called SOCT motif is usually found, which is a composite motif encompassing

both Oct and Sox motifs.

To illustrate this situation, I collected the 21 motifs found using peak-motifs from ChIP-seq
peaks obtained by immunoprecipitating Oct4 in ES cells, and analyzed them using
matrix-clustering. Given these 21 discovered motifs, is it possible to group all of these motifs
supposedly corresponding to the immunoprecipitated factor? If not, do some motif clusters

correspond to alternative motifs potentially bound by other TFs or composite motifs?

The 21 motifs were analyzed with matrix-clustering using the average-linkage method as
agglomeration rule and threshold values on correlation (cor >= 0.6) and normalized
correlation (Ncor >= 0.4). With these parameters the program identified six clusters (Figure
3a). The result is displayed as a motif forest rather than a motif tree: each cluster is displayed
as a separate hierarchical tree, rather than one tree grouping all the motifs as done by STAMP
(Figure 4). On the rightmost side are displayed the aligned logos in both orientations
highlighting local and global similarities between motifs of the same cluster. Each internal
branch is labeled in blue with the consensus encompassing the descendent motifs,
summarizing the informative positions of the motif variants returned by different algorithms.

In this example, in the names of the leaves are represented the names of the motif discovery
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algorithm which produced

the motif (oligo-analysis,

dyad-analysis, local-words,

postion-analysis). It must be noticed that similar motifs can be discovered by more than one

of these algorithms.
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Figure 3. Clustering results with
21 PSSMs discovered Dby
peak-motifs in Oct4 ChIP-seq
peaks. (a) Logo forest showing the
6 clusters identified among the
input motifs. (b) Branch consensus
and branch logo of the
Oct4-matching subgroup of cluster
2. (¢) Branch consensus and branch
logo of the SOCT-matching
subgroup.
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The largest cluster (cluster 1) regroups 11 motifs. The upper subgroup contains 6 motifs
matching the Oct4 matrix from JASPAR. These Oct-like motifs are summarized by a cluster
consensus (wdmATTwrCATawgaa) visible on the parental branch of the tree. By clicking on
this consensus, the user can access to the cluster logo (Figure 3b-c). The lower subgroup

includes 5 wider motifs matching the composite Sox/Oct (SOCT) motif.

The figures 3.b and 3.c show the aligned branch motifs and consensus of the Oct4 and SOCT
motifs. This figure shows how the cluster consensus highlights the relevant positions of the
grouped motifs. Also it is noticeable that the octamer canonical sequence of OCT4
(5'-ATGCAAAT-3") are the positions with higher information content in the Oct4 cluster
logo. In regard to the SOCT motif, the canonical sequence of Sox (5'-CATTGTA-3') is clearly
represented in the logo, except for the 'C' at the first position of the canonical sequence. Some
of the other motifs matches with TFs regulating development, for example MEF2C in the
cluster 3, Sp1 in cluster 5.
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Although the comparison and alignment of TFBMs can be done independently by many tools,
besides matrix-clustering, STAMP 1is the only tool that simultaneously produces the
hierarchical clustering and alignment of TFBMs. However matrix-clustering presents
significant advantages over existing solutions. (1) Display of motif trees either with aligned
logos and string-based consensuses. (2) Segmentation of the input set of TFBM into separated
clusters, rather than a motif tree. This approach is particularly an advantage because the
motifs are not forced to be aligned in one global alignment. (3) Generation, at each level of
the trees, of a merged motif (matrix and consensus) summarizing all descendent motifs rather

than one general profile, which could be affected when distant motifs are aligned.
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To show the differences among these tools I analyzed the same 21 motifs with STAMP,
results are shown in Figure 4. STAMP grouped the same input motifs in 4 clusters, with the
same subdivisions as matrix-clustering, except for the motif CTGCAG, which appears as a
singleton in the matrix-clustering results. This occurs by the combination of metrics values

used as threshold to create the clusters which allows matrix-clustering.

This study case shows that matrix-clustering identifies clusters of similar and redundant
motifs depending on the threshold used, it display a friendly interplay to visualize the
alignments which allow to recognize compund motifs as SOCT, it merge the matrices to
produce a cluster logo and consensus which highlight the relevant positions of the children

nodes on each branch of each tree.

Case study 2: negative control with randomized motifs

In order to test the relevance of the clusters returned by matrix-clustering 1 submitted a set of
randomized matrices, expecting that the program would not regroup them into clusters. I
randomized the same 21 PSSMs from peak-motifs result in the Oct4 ChIP-seq peaks by
permuting their columns. This approach presents the advantage of maintaining the number of
sites, the residue frequencies and the information content of each matrix, but the biological
context (the order of the relevant positions) is usually lost after this randomization. The same

threshold values were used (Ncor >= 0.4, cor >= 0.6) as in the study case 1.

Figure 5 shows that the 21 input motifs were split in 20 clusters. Only two motifs were
grouped into one cluster (cluster 1). It must be noticed that both motifs are A-rich motifs
which are not so informative and the permutations do not alter significantly the motifs. The 19
remaining motifs were not grouped and are displayed as single-leaf trees. The cluster

consensus is only displayed where the motifs were clustered.

The number of cluster in the negative control can variate each time the set of matrices is
permuted. To have an estimate of how many clusters can be found each time of
randomization, I took the same 21 matrices and generated 100 sets of permutations. The
threshold used is the same than the other examples: Ncor >= 0.4, cor >= 0.6. The distribution
of the number of clusters is shown in figure 6. In most of the cases, 20 or 19 clusters were
found, as in the Figure 5. In most cases, some motifs are clustered because they have poor
complexity (A-rich motifs) and it is not surprising to find these motifs in the same cluster
because they are made of essentially a repetition of the same column.
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This test shows the importance of the order of the conserved residues in the motifs as a factor
which affects considerably the similarity. Indeed, these permuted matrices have the same
information content as the real motif; the only difference is that the columns were sorted in a
different way. This test also shows the capability of matrix-clustering to avoid clustering
non-related motifs, and hence the motifs are not forced to be aligned. However as is discussed
later, this capability depends on the user-chosen thresholds on matrix comparison metrics, and

on the agglomeration rule selected for hierarchical clustering.

I also analyzed the same randomized motifs with STAMP, the results are shown in figure 7.
The motifs were grouped in 7 clusters depicted in the tree, the resulting familial profile is not
so informative and is reflecting the aligned positions of a few motifs. This test shows that
matrix-clustering can effectively separate a set of unrelated motifs into clusters and it and
highlights the importance of a threshold defined in a combination of metrics, which is not

supported in SATMP.
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Impact of threshold values

To define the clusters, the user must specify some threshold value. However given that the
tool compare-matrices allows to combine multiple metrics in the same analysis, it is possible
to impose simultaneous thresholds on more than one metric. So, in the previous examples, I
used a combination of Ncor >= 0.4 and cor >= 0.6. This approach allows users to vary
threshold values to adapt the granularity of partitioning of the motif tree and of the associated

motif alignments, in order to find a combination producing relevant groups.
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Figure 8a shows a heatmap indicating the number of clusters found by matrix-clustering on
the 21 motifs from peak-motifs result in the Oct4 ChIP-seq peaks, when threshold values for
Ncor and cor vary from 0 to 1. At very low values most motifs are grouped in one cluster
whilst with higher values the number of clusters tend to increase. I also applied the same
procedure using column-permuted versions of the 21 motifs (Figure 8b). As expected, the

number of clusters increases considerably by comparison with the original matrices.

These data demonstrate how a combination of stringent parameters can alter the number of

clusters identified by matrix-clustering.
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Figure 8. Impact of combination of threshold values on the number of clusters.
(a) Heatmap indicating the number of clusters found in the 21 motifs from Oct4
ChIP-seq experiment.. (b) Heatmap indicating the number of clusters in one permuted
version of the same 21 motifs . The values of cor and Ncor variates from O to 1.

Impact of clustering method

In addition of the thresholds, another parameter that strongly impacts on the number and
composition of the clusters is the agglomeration rule used to build the trees. This parameter
affects not only the number of clusters, but also the structure of the trees (order of motif
incorporation in the progressive alignment), and hence the motifs repartition among the
clusters. Figure 9 shows the differences of tree topologies and motif regroupment in clusters,
depending on the agglomeration rule: (a) single linkage, (b) average linkage, (c) complete

linkage. Clusters are highlighted on the trees by the alternance of different colors.
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Figure 9. Impact of agglomeration rule on the number of clusters. Consensus trees and
alignments of the 21 motifs discovered by peak-motifs in Oct4 ChIP-seq peaks. Each tree
results from a different agglomeration rule for the hierarchical clustering. (a) Single linkage.
(b) Complete linkage. (c) Average linkage. Separate clusters are created whenever one of the
user-specified thresholds is not satisfied, cor >= 0.6 and Ncor >= 0.4.

Case study 3: identification of motif families in the JASPAR database

Beyond the identification of redundant motifs in motif-discovery results, matrix-clustering
can be used also to group motifs bound by TF assigned to the same protein family, because
they share a common DNA binding domain. This study case shows how matrix-clustering can
group motifs of the same TF families and how the logo alignment simplifies the interpretation
of motifs networks. I analyzed separately two sections of the non-redundant “core” Jaspar
database, corresponding to insect and vertebrate TFs, respectively. For both cases, all the
motifs of the collection where compared with each other, using RSAT compare-matrices. The
resulting table of motif-to-motif similarities were converted to a motif-to-motif network
(Figures 10a and 10c), where each motif is represented as a vertex, and the edges denote pairs
of similar motif, with color and thickness reflecting the similarity scores. This representation
allows a visualization of the groups, however this visualization does not provide a partition in

the data into proper clusters.
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Figure 10. Similarity networks extracted from the taxon-specific collections of matrices
from the Jaspar database. (a) Vertebrate TFBMs. (b) Insect TFBMs. (c) Fragment of the
logo tree showing the typical Hox-motifs responsible for the highly connected subgroup.
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I used matrix-clustering in order to study the similarities of the grouped motifs looking for
cluster of motifs belonging to the same TF family. Threshold values are Ncor >= 0.4 and cor
>= (.7, average-linkage as agglomeration rule. For this example I used the vertebrate core
dataset. In the motif-to-motif network of these motifs (Figure 10a) at first glance we can
observe several well-separated clusters, with a high intra-cluster connectivity, which
correspond to well-known TF families, such as FOX, GATA, SOX, MYC, SP, KLE, etc. The
matrix-clustering results brings additional insight to understand how the clusters that can be
seen on the motif-to-motif network were segmented and aligned. Figure 10b shows a selection
of clusters found in the analysis. On cluster 1, corresponding to the FOX family, we notice the
high similarity between the motifs and how the relevant positions in the cluster-consensus are
almost the same position in the logos. Cluster 9 regrouops the myc, max and usf motifs,
which all belong to the Helix-Loop-Helix Leucine Zipper family. Cluster 10 presents a
particular case where motifs bound by two unrelated TF families: (KIf and Sp, resp.) are
grouped in the same cluster. Interestingly,are separated in two subgroups, one of them is the
Kriippel-like factors (kpl) and the other is with the SP factors, both groups are members of the
Sp/KLF family, both KLF and SP factors are characterized by zinc finger domains. However
the capability of matrix-clustering to segregate motis respectively bound by Klf and SP
factors suggest that tjeir respective domains have sufficiently diverged to confer them
significant differenences in the DNA-binding specificity. Cluster 15 shows the GATA motifs,
the upper subgroup has a composite motif TAL::GATA. We also observe a leaf with the
Mecom TF, which is known to recognize tha same 'GATA' sequence as the canonical GATA
factors, whereas heaving a distinct binding domain. This example shows the capability of
matrix-clustering to group motifs belonging to the same families, and even to distinguish

relevatn subgroups of TFs based on the evolutionary divergence of their binding domains.

To further investigate how matrix-clustering can help to understand the topology of a network
I also analyzed the insects core dataset from JASPAR. The insect motif-to-motif network
(Figure 10c) presents a very particular topology where most of the motifs are grouped in one
big cluster. A fraction of the logo alignment is shown in figure 10d. The logo alignment shows
a big strongly connected cluster. The logo tree indicates that this big quasi-clique of the
network corresponds to a set of highly similar motifs (TAATTA) corresponding to Hoxs. In
addition to help to explain the topology of this network, for these set of motifs, it is interesting

to note that many PSSMs are grouped according to their TF families.
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CONCLUSIONS AND OUTLOOK

In this work I presented matrix-clustering which is a novel bioinformatic tool that addresses
one of the main challenges in the field of analysis of cis-regulatory sequences: the clustering

and alignment of TFBMs.

To improve the analysis, specially for large collections of motifs, the MCL approach can be
integrated in matrix-clustering, this would allow use the motif similarities resulting from
compare-matrices to partition the network before applying the hierarchical clustering.
Indeed,MCL can treat very large graphs (thousands of nodes) within a few seconds, whereas
the time required for hierarchical clustering increases quadratically with the number of motifs.
MCL could thus be use as a first, rapid way to partition large motif sets (e.g. full databases),

and each subgraph would subsequently be treated by hierarchical clustering.

The next goal will be to integrate this program within other programs of RSAT to complement
the analysis of motifs, for example within peak-motifs to simplify the analysis of redundant
motifs found on ChIP-seq peaks or within motif-discovery which is a phylogenetic footprint

program where it could be useful group the motifs and study if they belong to certain taxa.

This tool present advantages over other existing solutions: (1) partitioning the input motif set
into distinct clusters, (2) cluster-wise multiple alignment, (3) visual representations with either
consensuses or logos, (4) capability to specify thresholds on more than one metric, (5)
user-friendly interface to display the clusters and logo alignments. The study cases show
many application which matrix-clustering can be use for. For example, grouping sets of
redundant motifs resulting from motif discovery, identifying composite motifs, identifying

groups of motifs belonging to the same family.
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