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Chapter 2

Resume

Les facteurs transcriptionnels (TF) sont des protéines qui contrôlent l’expression des gènes en activant ou en
réprimant la transcription. Leurs motifs de liaison (TFBM, également appelés «motifs») sont généralement
représentés sous forme de matrices de scores spécifiques de positions (PSSM). L’analyse de motifs est utilisée
en routine afin de découvrir des facteurs «candidats» pour la régulation d’un jeu de séquences d’intérêt (par
exemple les promoteurs d’un groupe de gènes co-exprimés). L’avénement des méthodes à haut débit a permis
de détecter des centaines de motifs, qui sont disponibles dans des bases de données.

Durant ma thèse, j’ai développé deux nouvelles méthodes et implémenté des outils logiciels pour le traitement
de collections massives de motifs, afin d’extraire une information interprétable à partir de données à haut
débit: matrix-clustering regroupe les motifs par similarité; position-scan détecte les motifs présentant des
préférences de position relativement à une coordonnée de référence (par exemple les sommets de pics de
ChIP-seq).

Actuellement, les bases de données de motifs sont couramment utilisées pour l’annotation. Cependant elles
ont tendance à croître rapidement, et leur contenu devient redondant. Une autre source de redondance est la
découverte de motifs sur base d’approches multiples, qui s’avère utile pour évaluer la robustesse des motifs,
mais présente un coût en termes de redondance. La découverte et l’annotation de motifs sont deux tâches
communes pour les études à échelle génomique. Cependant, à mesure qu’on découvre et annote plus de
motifs dans les bases de données, cette redondance rend les analyses ultérieures plus complexes et coûteuses
en ressources. Afin de faciliter l’analsye de motifs avec des collections de motifs étendues, j’ai développé
matrix-clustering, un outil qui réduit la redondance des motifs et permet de visualiser les groupes de motifs
alignés pour montrer leur similarité. Le résultat du clustering est représenté de différentes façons (alignements
de logos, arbres, carte de couleurs), et des collections multiples peuvent être analysées simultanément. En
profitant de cette fonctionnalité, j’ai effectué un clustering de collections taxonomiques de motifs afin de
créer des collections non-redondantes pour les insectes, les plantes et les vertébrés.

L’utilisation de collections non-redondantes de motifs présente un avantage pour certaines méthodes, par
exemple la détection de motifs enrichis. Ces méthodes se basent sur une collection de motifs connus, et chaque
analyse requiert donc d’analyser de grandes collections de motifs, ce qui complète la découverte de motifs.
Pour certains jeux de données, tels que les pics de ChIP-seq, on s’attend à observer certains motifs au centre
des pics, l’enrichissement est donc relatif à une position de référence. Puisque les méthodes d’enrichissement
positionnel existantes sont spécialisée pour le ChIP-seq, elles prennent uniquement en compte les sites à
haute affinté. Cependant, les sites à affinité plus modérée peuvent s’avérer pertinents pour moduler la
transcription. J’ai donc développé une méthode qui détecte les motifs soit enrichis soit appauvris localement,
sans se limiter aux sites de haute affinité. Cette méthode a été utilisée pour édtecter des motifs enrichis dans
un jeu de promoteurs humains capables d’activer l’expression de gènes à distance («Epromoters»).

Les méthodes que j’ai développées ont été évaluées sur base de cas d’études, et utilisées pour extraire de
l’information interprétable à partir de différents jeux de données de Drosophila melanogaster et Homo sapiens.
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Les résultats démontrent la pertinence de ces méthodes pour l’analyse de données à haut débit, et l’intérêt
de les intégrer dans des pipelines d’analyse de motifs.



Chapter 3

Abstract

Transcription Factors (TFs) are DNA-binding proteins that control gene expression by activating or repress-
ing transcription. TF binding motifs (TFBMs, more simply called “motifs”) are usually represented as
Position Specific Scoring Matrices (PSSMs), which can be visualized as sequence logos.

Motif analysis is routinely used to discover candidate TFs regulating a set of sequences of interest (e.g., a set
of promoters of co-expressed genes) and the results are key to infer regulatory networks between TFs and
genes. The advent of high-throughput methods has allowed the detection of thousands of motifs which are
usually stored in databases.

In this work I developed two novel methods and implemented software tools to handle large collection
of motifs in order to extract interpretable information from high-throughput data: (i) matrix-clustering
regroups motifs by similarity and offers a dynamic interface to visualize them; (2) position-scan detects
TFBMs with positional preferences relative to a given reference location (e.g. ChIP-seq peaks, transcription
start sites, …).

Currently, motif databases are highly used for motif annotation, however they grow up rapidly and their con-
tent becomes redundant. Another source of redundancy is the discovery of motifs using distinct approaches,
which is useful to obtain robust results, but has a cost in terms of motif redundancy. Both motif discovery
and motif annotations are common tasks in genome-wide studies. However as more motifs are discovered
and annotated using the databases, the redundancy makes the analysis more complex and time consuming,
and obfuscate the interpretation of the results.

In order to ease the motif analysis with large collection of motifs I developed matrix-clustering, a tool to
reduce motif redundancy and visualize groups of similar motifs, aligned to highlight their similarities. The
clustering is represented in different ways (logo alignments, trees, heatmap) and many input collections
can be clustered in a single run. Taking advantage of this latter capability, I clustered taxon-wise motif
collections creating thus non-redundant motif collections for insects, plants and vertebrates.

The use of non-redundant motif collections can be an advantage for some methods, for example those
detecting the enrichment of TFBSs relative to a reference position, (e.g., to Transcription Start Sites of to
the center of ChIP-seq peaks). The motif enrichment methods use as input a collection of known motifs
and therefore a large motif set can be analyzed in a single run, complementing the results of motif discovery.
Since the current positional motif enrichment tools are specialized in ChIP-seq, they only consider the TFBSs
with the higher affinity enriched at the center of the peaks. However weaker affinity binding sites can be
relevant to modulate transcription. For these reasons, I developed a method that detect positionally biased
motifs either enriched and depleted and the analysis is not limited to the strongest sites. This method was
used to detect TFBMs enriched in a particular set of human promoters involved in long-rage interactions
with other promoters (Epromoters).

The methods I developed have been evaluated based on control cases, and applied to extract meaningful
information from different data sets from Drosophila melanogaster and Homo sapiens. The results show that
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these methods enable to analyse motifs in high-throughput data sets, and can be integrated in motif analysis
workflows.
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Abreviations

• ChIP-seq: Chromatin Immunoprecipitation followed by hight-troughput sequencing

• CRM: Cis-Regulatory Module

• DNA: Deoxyribonucleic Acid

• DBD: DNA-Binding Domain

• FBP: Familial Binding Profile

• GTF: General Transcription Factor

• IC: Information Content

• Nucleosome-Depleted Region

• NGS: Next-Generation Sequencing

• PSSM: Position Specific Scoring Matrix

• PWM: Position Weight Matrix

• RNA: Ribonucleic Acid

• RNAP: RNA-polymerase

• mRNA: Messenger Ribonucleic Acid

• miRNA: Micro Messenger Ribonucleic Acid

• PBM: Protein-Binding Microarray

• RSAT: Regulatory Sequences Analysis Tools

• SELEX: Systematic Evolution of Ligands by Exponential Enrichment

• TF: Transcription Factor

• TFBM: Transcription Factor Binding Motif

• TFBS: Transcription Factor Binding Site

• TSS: Transcription Start Site
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Chapter 5

Transcriptional Regulation

5.1 The importance of transcriptional regulation

One of the most intriguing and studied questions in biology is that one related to transference of information
starting from DNA on multicellular organism: how is possible that a single cell with a genome has the
potential to develop different tissues, organs and systems?

Now we know how this information flows through different biochemical processes, starting from DNA to
DNA (replication), from DNA to RNA (transcription) and from RNA to proteins (translation), see Figure
5.1. The first on reveal aspects of gene regulation were Jacob and Monod, they demonstrated that the
synthesis of proteins (i.e., the final product of most genes after being expressed is a protein), starting from
DNA transcription, was mediated by a special class of proteins that they called repressors and these could
regulate the gene activity bound in specific short sequences of DNA (they called them operators) located
near the genes (Jacob and Monod, 1961). This discovery opened a research field on molecular biology (the
transcriptional regulation) and shed light in the understanding of gene regulation showing (at that time)
that gene expression was mediated by a group of proteins (repressors) and short DNA sequences (operators).

Many years after, it was discovered that there was another kind of regulatory proteins, the activators, that
in contrast to repressors, they can regulate positively the gene expression. Nowadays both are known as
Transcription Factors (TFs). Today we have a better understanding of these processes and we know that the
DNA transcription is the first step of gene expression, hereafter I will refer gene expression as the process
where a gene is transcribed to produce messenger RNA (mRNA), that generally leads to synthesis of proteins.
Initially, as most experiments were done in bacteria, the researches discovered that the DNA regions where
the TF bind were located upstream near the gene, a region known as promoter, this concept is valid for
bacteria but we will see that metazoan transcriptional regulation is driven by more regulatory elements.

However, although the information flux looks very simple, we must take into account that metazoan genomes
develop complex cellular states that give rise to different tissues with specialized functions, this make us set

Figure 5.1: Flux of biological information
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another question: how is coordinated the cell differentiation, for example to produce neuron or a kidney cell?
A simple answer could be: the gene repertoire (that is partially true); but once again this make us set more
questions: how is regulated the gene expression?; do all genes are active at the same time? Nowadays we
know that the differential gene expression through time (development, ageing) is what give rise to different
tissues, cell lines, organs and homeostasis; and the dysregulation of gene expression could be associated with
diseases (Mathelier et al., 2015). Some examples are the Drosophila melanogaster body segmentation (Tautz
and Pfeifle, 1989), T-cell differentiation (Zhu et al., 2010), cell reprogramming (Takahashi and Yamanaka,
2006) or cancer (Ell and Kang, 2013).

The answers of these questions are far from trivial, but a very naive answer could be the next one: a
coordinated combination of several factors (including metabolites, proteins, RNAs or the DNA itself) are
responsible of the gene expression (from DNA to RNA to proteins). Each step is highly regulated by several
components and even at different cell compartments. One of this steps of gene regulation, called epi-genomics,
involve chemical changes on DNA or DNA-associated proteins (e.g., histones) that does not alter the DNA
sequence itself, but may alter the gene expression or DNA accessibility. Some examples are DNA methylation,
modification of histone-tails, and 3D structure of the chromatin. The term epi-genomics used in this work is
not the same term by Waddington (epi-genetics), which refers to the connection between the genotype and
phenotype related to cell differentiation (Waddington, 1942).

For the scope of this thesis I will focus on the transcriptional regulation (Figure 5.2) specially in the TFs
and the cis-regulatory elements, but the readers must not forget that other layers of regulation could also
modulate the gene expression (e.g., mRNA translation and post-translational regulation).

To summarize, cells sense the internal and external stimuli which consequence are changes on gene expression
to adapt to these changes. Molecularly gene gene expression is driven by different elements, two of them, the
TF and cis-regulatory sequences drive the transcriptional regulation of the genes. The changes expression
goes from activation or inactivation of a gene, to a complex processes as cell differentiation or organogenesis.
This awesome phenomena is of my interest and this is my motivation to study and contribute to this field.

5.2 Generalities of DNA transcription

Transcription is defined as the process in which the RNA is synthesized from a DNA template, the produced
mRNA will be further processed to produce a protein. In any living organism (from bacteria to metazoa),
the transcription is performed by a protein complex called RNA-polymerase (RNAP) which has affinity for
short sequences located in the promoter (e.g. TATA-box, BRE-elements), but usually this affinity is not
sufficient to start transcription and the RNAP requires help from other elements.

These short sequences at the promoters are capable of recruit the RNAP. Those promoters capable to start
the transcription of its downstream gene by themselves (i.e., recruiting the RNAP without help of other
elements) are considered strong promoters. By contrast, the co called weak promoters require the help from
TFs (or other proteins) to stabilize the RNAP or recruit some of its sub-units (Qin et al., 2010) (Figure 5.3).

Although the first studied cis-regulatory elements were the promoters, another class of regulatory elements
was discovered, that are the so-called enhancers, which are regions that can activate distally the gene ex-
pression (Banerji et al., 1981), by contrast to the promoters that do it locally. This discovery revealed other
cis-regulatory regions acting distally in the silencing of gene expression (silencers) or other sequences capable
of avoid the enhancer activity (insulators). However, we must not forget that the interaction of these ele-
ments depends on the accessibility for the regulatory proteins to these cis-regulatory sequences, see Figure
5.3 and table 3.1 for a summary of the regulatory elements participating in the transcriptional initiation
(Lenhard et al., 2012).

A detailed description of TFs and cis-regulatory regions will be showed in the next sections with a brief
review of the other transcriptional regulatory elements.
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Figure 5.2: Different layers of transcriptional regulation. The chromatin conformation and histone marks
determine the regions where regulatory proteins can bind DNA, an open region allow the acces of TFs which
can help to recroute RNAP, the transcript elongation is mediated by the RNAP resulting in a mRNA that
is further processed by the splicing machinery, the mRNA stability is determined by the degradation rate
of the mRNA or by miRNA. Figure adapted from Komili(2008), Cole (2008), Bentley (2014), and Shlyueva
(2014)

Table 5.1: classification of transcriptional regulatory elements.

Element Description Class
RNA-polymerase (RNAP) Complex of proteins that transcribe the DNA to RNA Protein
Transcription Factor (TF) DNA-binding proteins regulators of gene expression Protein
Transcription Start Site (TSS) First nucleotide transcribed by the RNAP DNA
Cis-Regulatory Module (CRM) A DNA region whit a high concentration of distinct TFs DNA
Transcription Factor Binding Site (TFBS) A short DNA sequences bound by a TF DNA
Enhancer Distal regulatory (activation) region DNA
Silencer Distal regulatory (repression) region DNA
Insulator boundary between hetero- and eu-chromatin. DNA
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Figure 5.3: Transcriptional regulatory elements in metazoa. CRM: Cis-Regulatory module; TSS : Transcrip-
tion Start Site. Figure adapted from Lenhard (2012).

5.3 Chromatin structure and histone modifications

All the genomes should be efficiently packed into a small volume to fit into the nucleus of a cell. In eu-
karyotes, the large scale 3D organization of the genome consist in the so-called chromosome territories, the
specific region of the nucleus occupied by a chromosome. At intermediate scale, the DNA is folded and can
form Topological-associated domains (0.5-1Mb) and within them, the DNA can from smaller loops (hun-
dreds of kilobases) (Figure 5.4) (Bonev and Cavalli, 2016; Rao et al., 2014; Stevens et al., 2017). At small
scale, the DNA is wrapped (147bp) in structures called nucleosomes which consist on a octamer of proteins
called histones (two units of each H3, H2A, H2B and H4). The histones contain domains which particular
aminoacid residues can be reversely and covalently modified, by adding or removing compounds (e.g., methyl
or phosphate groups) by specialized enzymes as methylases/demethylases or kinases/phosphatases(Tsankova
et al., 2007). Many residues can be modified in the same tail, these modifications are denoted as histone
marks and have a particular notation. For example if the lysine at position 27 of the histone 3 is acetylated,
this is represented as H3K27ac.

The histone marks may be recognized by chromatin remodeler proteins, which in turn modify the local
structure of the DNA, for example the nucleosome compaction, as consequence the DNA can be open and
accessible to regulatory proteins as TFs or RNAP, or the DNA can be closed, silencing the local gene
expression (Plass et al., 2013). The histone marks are commonly associated to transcriptional states (active
or inactive genes) or cis-regulatory regions (Figure 5.5) (Lawrence et al., 2016). For example, H3K27ac
is associated with active promoters and distal regulatory elements, H3K4me3 and H3K36me3 are both
associated with transcribed chromatin, H3K36me3 is found along gene body of transcribed genes. By contrast
to these active marks, H3K9me3, H3K27me3 and H4K20me3 are generally related to gene repression (Barski
et al., 2007). It is important to note that these marks are associated to these regions or activities, but it
should not be considered as the cause of these phenomena.

5.4 DNA methylation

DNA methylation is a reversible process where a methyl group (CH3) is added to the DNA (specifically to
the 5th carbon in a cytosine nucleotide ring; 5mC). This covalent modification alters the nucleotide but not
the DNA sequence. This modification, in mammals, occurs mainly at the CpG sites (a cytosine followed by
a guanine). The methylation is driven by proteins belonging to the DNA methyltransferase (DMT) family
but some histone marks can block de novo methylation (Figure 5.6) (Jones, 2012).
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Figure 5.4: 3D organization of the eukaryote genome. Figure from Ea (2015).

Figure 5.5: Nucleosome and histone modifications. a) A nucleosome and its components. b) Histone tail
and examples of modifications. Figure adapted from Tsankova (2007) and Barski (2007).



18 CHAPTER 5. TRANSCRIPTIONAL REGULATION

Figure 5.6: DNA methylation. a) DNA methylation pathway. b) Example of gene activity when the CpG
islands are either methylated or unmethylated.

Genomic regions with a high concentration (>60%) of CpG dinucleotides are known as CpG islands. Para-
doxically, most of the CpG islands located at promoters (80-90%) are not methylated, by contrast those CpG
islands located at transposons are constitutively methylated, therefore contributing to repress the transposon
activity.

Usually the DNA methylation is associated to gene silencing by the following reasons (Figure 5.7a):

• Methylated cytosines may alter the binding specificities for many TFs (Hu et al., 2013; Lercher et al.,
2014).

• DNA methylation directly increases affinity of certain sequences for histone octamer, therefore increas-
ing nucleosome occupancy and compaction (Collings et al., 2013).

• 5mC is a marker for methyl-cytosine binding domain proteins, which may recruit chromatin remodelers
that induce chromatin compaction (Lande-Diner et al., 2007).

The 5mC can be converted into 5’-hydroxymethyl-cytosine (5hmC), as part of the methylation/demethylation
pathway of the cytosine, this process achieved by the enzymes belonging to the ten-eleven translocation (TET)
family. Conversely to the 5mC, the 5hmC is correlated to gene expression, since it has been observed on
promoters, enhancer and active genes (Figure 5.7b) and this could be explained because the TET enzyme
may block the activity of DMT, maintaining the promoters in a unmethylated state (Sérandour et al., 2016;
Branco et al., 2011).

The methylation/demethylation of the cytosines is cell-type and it also depends on the stage of the cell cycle.

Altogether, the gene regulation driven by chromatin structure, the histone marks and DNA methylation is
known as epigenomic regulation. The regulation of transcription driven by these factors is a result of the
DNA local structure and the DNA covalent modifications that are key players that limit or facilitate the
recruitment of regulatory proteins.
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Figure 5.7: Examples of gene regulation mediated by (a) 5-methyl-cytosine (5mC) and (b) 5-hidroxy-methyl-
cytosine (5hmC). figure adapted from () and (),
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Table 5.2: Summary of TF regulatory mechanisms and their effects on gene regulation.

Mechanism Effect Description
Activation Direct Recruitment/stabilization of RNAP subunits
Activation Indirect DNA conformation change
Activation Indirect Co-binding with other factors (synergy)
Activation Indirect Recruitment of chromatin remodeller (pioneer TF)
Activation Indirect Preventing nucleosome repositioning
Repression Direct Blocking RNAP binding
Repression Indirect Modulating a TF activator
Activation/Repression Indirect Looping

5.5 Transcription Factors

The Transcription Factors (TF) are regulatory proteins that can activate or repress the gene transcription.
Their main particularity is that they recognize very short DNA sequences, known as Transcription Factor
Binding Sites (TFBS), varying in length from 6-20 base pairs (bp). The TF binding on regulatory sequences
(either promoters or enhancers) is a crucial step in the transcription initiation and modulating the transcrip-
tional rates. In general, TFs are classified as activators or repressors, some TFs however, can act as both,
depending on the condition (Lee et al., 2012). In addition, the mechanism the TFs help to activate or repress
transcription is widely variable but in general can be classified as direct or indirect ways (see table 3.2 for a
summary), reviewed in (Spitz and Furlong, 2012) and (Browning and Busby, 2016).

The feature that distinguish a TF from other regulatory elements, it is the ability to bind DNA via a DNA-
binding domain (DBD) (see Figure 5.8), other regulatory proteins lacking the DBD are considered co-factors.
The DBDs can read the DNA minor or major groove and create short-term weak interactions between the
amino acids of the DBD and the nucleotides of the TFBSs. Usually the TFBSs of a particular TF use to
be similar at many positions, but not identical. However using computational methods we can infer the
consensus sequence for binding (i.e., a representation of the collection of sequences bound by the query TF)
for a huge number of TFs (Wasserman and Sandelin, 2004), and as more binding sites are available for a TF,
we would have more accurate consensuses (see Figure 5.9), but this is not always feasible since the number
of TFBSs of each TF varies, some TFs (e.g., HipB on Escherichia coli K12) has a handle of experimentally
validated TFBSs whilst other TFs (e.g., cMyc on humans has thousands of reported TFBSs).

The genome-wide identification of TFBSs is a complex task either at computational and experimental level,
and at the same time it is not completely understood how the TFs recognize their binding sites: looking
for short sequences (6-20bp) in a whole genome (thousands of nucleotides). Several models have proposed
that TF spent a lot of time on DNA searching for their binding sites and by four different modes of motion:
(i) 3D diffusion (i.e., the TF moves freely in the nucleus), (ii) 1D sliding (i.e., the TF moves through short
regions of DNA), (iii) intersegmental transfer (i.e., the TF moves from one DNA segment to another that are
not linearly close) and (iv) hopping (i.e., the TF make short ‘jumps’ away the DNA) (Schmidt et al., 2014;
Metzler, 2009). Through these movements TF can scan hundreds or thousands of nucleotides in a short
period time (see Figure 5.10) and recent studies suggest that TF use to bind bona fide binding sites that are
located in regions with a similar GC-content to the consensus binding sequence (Slattery et al., 2014; Dror
et al., 2016) (Figure 5.11), reducing thus the universe of TF-scannable sequences.

It is already known that within the TFBSs not all the nucleotides contribute with the same strength for the
TF binding, usually the strongest nucleotide contributors are the most conserved positions in the consensus
(Figure 5.8), however many recent studies showed the importance of the flanking regions as determinants of
strong or weak TF binding specificity (Jurk et al., 2016; Gord??n et al., 2013).

In addition to all the mechanisms listed before, another important feature to list about TFs is their mech-
anisms to activate or express genes. In bacteria, where the transcriptional regulation use to be simpler,
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Figure 5.8: 3D structure of TF MEF2C bound to DNA.

Figure 5.9: Example of binding sites for human MEF2 and table of IUPAC for DNA sequences. A collection
of TF binding sites can be represented as IUPAC consensus sequence. Note that whilst some positions
of the alignment are highly conserved in all the binding sites (blue rectangle), others are highly variable
(redrectangle). The IUPAC table shows the alphabet used to represent all the possibles nucleotides at each
columns of the binding site alignment. Figure adapted from Wasserman (2004).



22 CHAPTER 5. TRANSCRIPTIONAL REGULATION

Figure 5.10: TF searching modes. Figure from Schmidt (2014).

Figure 5.11: Motif environment. TFs tend to bind to regions with highly similar GC content relative to their
consensus sequence. Figure from Dror (2016).
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Figure 5.12: Example of Cis-Regulatory Module. Figure from the meme-suite.org, mcast sample.

Figure 5.13: Transcription Factor Binding Motif grammar. Several examples of motif grammar considering
the orientation, strand and relative position. Figure from Spitz (2012).

relative to metazoa, usually the presence of a particular TF and the position where it is bound relative to
the Transcription Start Site (TSS) is enough to infer if such TF would be an activator or repressor. In
bacteria, usually the TF activators interact directly with some RNAP sub-units, helping to stabilize the
complex before starting transcription, by contrast the repressors usually block the RNAP binding sites at
the promoters; the most complex cases of transcriptional repression involve looping of DNA mediated by
TFs or histone-like proteins known as Nucleoid-Associated Proteins (Browning and Busby, 2016, Grainger
and Busby (2008)).

In metazoan, TFs use to be concentrated at the cis-regulatory regions (e.g., promoters and enhancers), those
regions with a high density (i.e., a cluster) of TFs in close proximity are known as Cis-Regulatory Modules
(CRMs) (Figure 5.12), and although it is understood that the transcription activation can be tuned up
by the cooperative binding among several TFs, there is no (at this time) one way to know the individual
contribution of each TF in the regulation of a gene (Hardison and Taylor, 2012), and even now it is not
fully understood whether the combinatory and motif positioning (grammar) of TFs matters within a CRM.
One challenge in this research area is that the presence/absence of TFBSs is not solely required to study
this complexity, other features must be considered (e.g., inter-motif distances, relative orientation, order of
motifs, presence of co-factors) (Spitz and Furlong, 2012) (Figure 5.13). In addition, the studied conditions
may affect the behavior of a TF, for example RNX1 (a TF involved in blood cell differentiation) can act as
either activator in certain conditions and as repressor in others (Whitfield et al., 2012), this behavior could
be explained by the presence of co-activators or co-repressors (Zabidi and Stark, 2016; Reiter et al., 2017;
Stampfel et al., 2015) or biochemical modifications of the bound sequences, for example methylation of the
cytosines.

In brief, although co-factors are regulatory proteins, they do not bind directly the DNA, but they can regulate
gene expression (i) interacting with the TFs and change the TF conformation, therefore the T’s DNA-affinity,
or (ii) making a direct contact with RNAP (using the TF as a scaffold to reach the RNAP) or (iii) through
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Figure 5.14: Example of co-factors, their functions and how they interact with TFs and RNAP. Figure from
Reiter (2017).

an indirect way, for example, recruiting chromatin remodelers, histone modification enzymes or nucleosome
destabilizators (Reiter et al., 2017) (Figure 5.14).

Another important property of TFs is their ability to interact among them, through protein-protein interac-
tions, to form TF complexes. When two molecules of the same TF interact, the TF-TF complex is known as
homo-dimers (e.g., TF from STAT family), when the TFs are different, it is called hetero-dimer (e.g., Sox2-
Oct2). Although dimers are commonly observed, other complexes can be formed, as tetramers or octamers.
These TF-TF interactions are frequently observed in some cases of transcriptional repression, for example on
E coli K12, when a tetramer made of AraC or the lambda-repressor forms DNA-loop that avoid the RNAP
binding in the promoter. In other cases a TF alone cannot act unless there is another TF (e.g., CytR is a
repressor that only inhibits the activity of bound CRP in E coli K12). In metazoan TFs, two recent studies
detected TF dimers not observed before and a detailed analysis suggested that the TFBSs recognized by a
TF dimer could be different from that recognized by one of its own components (monomers) (Jolma et al.,
2015; Isakova et al., 2017), increasing thus the possible combinations of TF binding (lexicon).

The regulation of transcription initiation is also modulated by a set of proteins called General Transcription
Factors (GTFs), they are six protein complexes (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH) that bind
specifically in the promoters and altogether form the Transcription Pre-Initiation Complex, which interacts
with RNAP and helps it to bind to and open the DNA at promoters (Sainsbury et al., 2015). However,
although some of these protein sub-units interact directly with DNA (e.g., the TATA-binding protein (TBP)
from the TFIID complex), altogether with the RNAP are considered the classical transcriptional apparatus
required for transcription initiation in almost all promoters, for this reason they will not be considered for
the further chapters and results analyses.

5.5.1 Transcription Factor Families

Proteins are usually made of hundreds of aminoacids that can form structures called domains. The protein
domains has a particular function (e.g., bind a metabolite or bind DNA) and a single protein can have
multiple domains. We can find several domains within the TF structure, as I mentioned early all the TFs
have a DNA-binding Domain (DBD), which is the responsible for the recognition of a particular sequence
on DNA, however other domain commonly found in TFs (mainly in bacteria) is the domain that senses
environment stimuli (e.g., binding a metabolite) and thus the TF becomes active/inactive.

The TFs can be classified according the similarity of their DBD aminoacid sequences, the resulting groups
are called TF families. Usually the TFs from the same family use to have at least 25% of aminoacid sequence
similarity among them, this means that the domains should fold similarly and therefor the TFs would
recognize similar DNA sequences (Pérez-Rueda et al., 2015). An important feature of DBDs is that they can
recognize not only contiguous sequences (monad), but also sequences separated by a spacer (dyads), some
times with a fixed or a variable length (Figure 5.15). In many cases, the TFBSs of members belonging to the
same TF Family are almost identical (e.g., STAT1 and STAT2, from the family STAT), this is due because
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Figure 5.15: Examples of 3D structures of TFs interacting with the DNA in one and two points. Figure
adapted from Protein DataBank; ID: 4p9u.

Table 5.3: Annotation of TF Families.

Name Organisms PMID Website
TFClass Human and mouse orthologs 23180794 tfclass.bioinf.med.uni-goettingen.de/tfclass
- E coli K12 26094112 -
TEC E coli K12 26843427 www.shigen.nig.ac.jp/ecoli/tec/
DBD Multi 20675356 www.transcriptionfactor.org/
PAZAR Multi 18971253 www.pazar.info/cgi-bin/index.pl

these TFs are actually paralogs, without sufficient time of divergence. But in other cases, although the DBD
is similar, it does not recognize similar sequences (e.g., zinc fingers because of the variable spacer between
the nucleotide recognized by the DBD).

The number of TF families varies on each organism, there are some TF families associated to a particular
taxon for example Zinc clusters on fungi or zinc fingers in vertebrates. Within each family, the number of
members differ, from one to hundreds of members. Similarly, not all the member of a family are activators
or repressors (as I mentioned in the previous section, this capability depends not only in the TF itself), but
one particular family could be associated to a particular function or process (e.g., Hox TF Family involved
in development).

Currently, exist different studies and resources that have classified the TFs from different species (e.g., human,
mouse, bacteria), and constitute key resources in the identification and annotations of novel TFs (Table 3.2).

5.6 Cis-Regulatory Sequences

As I mentioned in the previous section, the TFs search and bound specific short-sequences in open DNA
regions where they can regulate the transcription. If these regions are located near the TSS of a gene
are called promoters; if they activate gene expression at distance (relative to TSS of the target gene) and
independently of their orientation are called enhancers; if they repress gene expression distally are called
silencers; if they delimit the euchromatin from heterochromatin and isolate the enhancer activity are called
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Figure 5.16: The metazoa core-promoter and its elements. BRE: B recognition element; DCE: downstream
core element; DRE: DNA recognition element; MTE: motif ten element. Figure adapted from Lenhard
(2012).

insulators (Kolovos et al., 2012), of note that in bacteria the promoter is the classical cis-regulatory element
and only a few cases of distal regulation have been reported (Beck et al., 2007). In this section I will
explain with more details the genomic and epigenomic features of these elements and how they interact
(e.g. physically) to activate or repress a target gene.

5.6.1 Promoters

The transcription of a gene starts when the RNAP complex is stable. The region near the TSS (+/- 50 bp)
where the RNAP is loaded is called core promoter (Kadonaga, 2012). Within the core promoters there are
short regions that are recognized by the GTFs (e.g., TATA-box, Initiator (Inr), upstream and downstream
TFIIB Recognition Elements (BRE)) or RNAP sub-units, some of them are taxon-specific, and normally a
promoter has only a few of these elements (the Inr is the most common), rarely all of them (Lenhard et al.,
2012). As consequence, a core promoter per se can rarely activate the transcription of a gene, and it requires
the help of other proteins (e.g., TFs, GTFs) which are usually bound immediately in the region upstream the
core promoter. This region, known as the proximal promoter, is indispensable for those promoters lacking
the TATA-box and usually the GTFs are recruited in this region (Sainsbury et al., 2015). Hereafter the term
promoter will be used to refer the region including either the core and proximal promoters (Figure 5.16).

Although this work is focused in the regulatory sequences, is important to mention the contribution of the
epigenomic context in the regulation of gene expression. It must be taken in consideration that an active
promoter is always located at an open DNA region, a nucleosome-depleted region (NDR) flanked by two
nucleosomes (called promoter-associated nucleosomes), these open regions allows the access and assembly of
regulatory elements (e.g., TFs, GTFs, RNAP). In addition, many histone modification have been associated
with the promoter-associated nucleosome (e.g., H3.3/H2A.Z) and specific histone marks (e.g., H3Kme3 and
H3K27ac) have been associated with active promoters (Figure 5.17), but other marks, for example H3K27me3,
are associated with repressed promoters (Lawrence et al., 2016).

Another property of some promoters is their ability of bidirectional transcription, usually the transcription is
unidirectional, however, recent studies have revealed that bidirectional transcription is a common phenomena
across metazoa promoters and it is not completely understood (and is still under debate) whether the
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Figure 5.17: An active promotre with its epigenomic features. Figure adapted from Shlyueva (2014).

Figure 5.18: Bidirectional promoters in bacteria and human. Figure adapted from Andersson (2015).

bidirectional transcription is due to two close promoters or as a consequence of the RNAP recruited in
an open DNA region with a high concentration of TFs (other cis-regulatory regions (e.g., enhancers) show
bidirectional transcription as well) (Andersson, 2015; Scruggs et al., 2015; Bagchi and Iyer, 2016). Only one
of the transcripts, that one transcribed from downstream gene, will produce an stable mRNA, the other
transcript (antisense) normally is rapidly degraded (because of the lack of splice sites for U1 and a higher
concentration of poly-A sites). It has been discovered many features associated to promoter bidirectionality,
for example the presence of promoter elements (TATA-box), over-representation of TFs including NF-Y,
Nrf-1, YY1, GABP, MYC, E2F1, and E2F4, or special histone-tail modifications (H3K4me2/3) or histone
variants (H2A.Z and H3.3). In addition, the NDP of the bidirectional promoters use to be longer that those
for the mono-directional, allowing thus the binding of more TFs (Bagchi and Iyer, 2016) (Figure 5.18).

5.6.2 Enhancers

In addition of the TSS-proximal regulatory regions (promoters), exist other class of regulatory elements
capable of activate transcription from a TSS-distal position, these group of cis-regulatory regions are known
as enhancers. Although the enhancers were discovered since many years ago, it is until recent times that
they became widely studied, and at least in the human genome, a huge number of regions with potential
enhancer activity has been reported by the ENCODE project (Encode Consortium, 2012).

Usually, the enhancers are defined as a cis-regulatory regions that active genes distally, their size vary in
length from 100-1000bp and contain a large number of TFBSs for a multitude of TFs, which in turn recruit
other regulatory proteins (e.g., co-factors, chromatin remodelers) (Figure 5.20). Another characteristic of
the enhancers is their capability to interact physically with other cis-regulatory regions (e.g., promoters)
that can be distant in the genome (usually the enhancers are located on intergenic regions, however they
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Figure 5.19: An enhancer and its genomic and epigenomic features. Figure taken from Maston (2015).

have been found in introns as well), and they can activate gene expression independently of their orientation.
These interactions are, in part, orchestrate the transcriptional regulation (Pennacchio et al., 2013; Shlyueva
et al., 2014).

Although once an enhancer is identified, it is usually associated (naively) to interact with the closest TSS,
or using complex methods it is associated to a single distal TSS. Recent studies showed that an enhancer
can interact with several promoters and one promoter could be associated to several enhancers (distinct
enhancers for distinct conditions). Given that the enhancers can recruit a high concentration of TFs (and
other regulatory proteins), first, their chromatin environment should be open. As the chromatin regulation is
cell-type dependent, it is important to note that not all the enhancers are active at the same time (Andersson
et al., 2014).

Similarly to promoters, many epigenomic features (i.e., histone marks) have been associated to active en-
hancers. Starting from the chromatin environment, enhancers are regions with low nucleosome occupancy
and high DNaseI hypersensitivity, as an open DNA region, the flanking nucleosome use to have particular
histone variants (e.g., H3.3 and H2A.Z) that use to be unstable in order to a rapid chromatin remodeling.
Other feature is the enrichment and depletion of H3K4me1-H3Kme2 and H3Kme3, respectively, relative
to promoters, and the histone mark H3K27ac have been associated specifically to active enhancers (Engel
et al., 2016; Maston et al., 2012). Although many features have been associated to enhancer, it is difficult to
find enhancers using simply the epigenomic features, many studies report that the variability in epigenomic
features in enhancers is higher than those observed in other regions as promoters (Heintzman et al., 2007).
Although the epigenetic features can indicate the DNA accessibility, other features (e.g., presence of TFs)
could complement the identification of bona fide active enhancers. Some examples are the two co-factors
p300 or CBP (CREB-binding protein), both are acetyl-transferases that interact with TFs usually bound at
enhancers.

In addition to the epigenomic and genomic features already described, another property of the enhancers
it that, similarly to promoters, given the high occupancy of TFs and RNAP, some enhancers can present
bidirectional transcription, resulting in the production of a class of RNA known as eRNA (enhancer RNA),
and currently are considered a key feature for a large part of active enhancers (Andersson et al., 2014) and
this phenomena occurs at genome-wide scale (Figure 5.19). But similarly to some anti-sense transcripts
produced at promoters, usually the eRNAs are rapidly degraded, because the lack of U1 splice-sites and
enrichment of poly-A sites (Andersson, 2015; Nguyen et al., 2016). Although the function of eRNAs is not
completely understood and it is currently debated (Rahman et al., 2017), it has been associated with the
modulation of enhancer-promoter looping stability and recruitment of co-factors (Hsieh et al., 2014).
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Figure 5.20: Scheme with the steps of enhancer activation and recruitment of regulatory elements. Figure
from Maston (2015).
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Figure 5.21: Scheme with the steps of enhancer activation and recruitment of regulatory elements. Figure
taken from Maston (2015).

5.6.3 Silencers and insulators

In addition to promoters and enhancers, that altogether control the activation of genes, there are other
cis-regulatory regions that control the repression. One of these regions are called silencers, which similarly o
enhancers act TSS-distally, and independently of their orientation with the difference that their activity is
always repressive (conversely to enhancer activity that is always gene activation).

Silencers recruit combinations of TFs or co-factors that repress the gene activity and their activity can be
direct, interacting physically with a promoter, indirect by modulating an activator element (i.e., interacting
with an enhancer and annihilating its activity). It is difficult to assign whether the TF recruited at the
silencers are strictly repressors. One possibility is that TFs bound or the co-factors recruited on silencers
are exclusively repressors or co-repressors, respectively, but there are many TFs that can act as activators
and repressors (e.g., RUNX1), according to different conditions. Currently, a short number of silencers have
been identified in mammal genomes and hence their genomic and epigenomic features are not well described
(Liu et al., 2006; Hao et al., 2015).

Another cis-regulatory regions, with repressive activity are the so-called insulators, they are called so be-
cause they prevent the activation of a gen by an enhancer (i.e., they isolate the enhancer activity) (Figure
5.21). In addition, insulators limit the heterochromatin boundaries. Similarly to enhancers and silencers,
insulators can act distally and independently of their orientation relative to their targets. Although the
regulating mechanism are not fully understood, the function of insulators is associated with CTCF (that is
also considered a TF) (Ong and Corces, 2014); and two models of regulation have been proposed (Herold
et al., 2012): (i) looping model, where two or more insulators interact physically (using cohesin) and this
loop alter the 3D genome conformation, affecting thus the promoter-enhancer interactions; (ii) decoy model:
the insulator interacts directly with other cis-regulatory elements and inhibits thus their activity.

5.6.4 Similarity between enhancers and promoters

Enhancers and promoters are classically considered as independent regulatory elements, based on their
relative location to TSSs and their histone modifications. Recent studies, however, have higlighted the
functional, genomic and epigenomic similarities between enhancers and promoters (Andersson, 2015; Kim
and Shiekhattar, 2015; van Arensbergen et al., 2016; Arnold et al., 2016; Dao et al., 2017) listed below
(Figure 5.22):

• Epigenomic features:

• Enhancers and promoters are located at open chromatin regions.

• Their flanking nucleosomes contains the histone variants H3.3 and H2A.Z (Barski et al., 2007).

• Although some studies define enhancers and promoters based on histone marks, it has been shown that
both share similar histone marks although the amount of these marks differs. For example, the ratio of
H3K4me1/H3K4me3 is low at promoters and high at enhancers, whilst the ratio of H3K4me3/H3K27ac
is high at promoters and low at enhancers (Barski et al., 2007; ?; ?). The changes on these ratios occurs
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Figure 5.22: Similarities between enhancers and promoters. Figure taken from Kim (2015).

during the cell differentiation and development, which reflects the dynamic changes on transcription
activity, rather than represent functional regulatory elements.

• Genomic features:

• Enhancers and promoters contain typical core promoter sites (TATA box, INR motifs, GTFs binding)
which enable the RNAPII recruitment and therefore the transcription initiation (?).

• Recruitment of RNAPII, although at enhancers occurs at a lower rate (??).

• Contain binding sites for different TFs.

• Bidirectional transcription.

• Evidences:

• In a recent study, it was shown that a genomic region may display promoter-related histone modification
in a cell line, and enhancer-related histone marks in another cell line (Leung et al., 2015).

• An enhancer located at an intronic regions may function as an alternative promoter, producing thus a
protein isoform in a particular condition (?).

• The study by Li et. al (?) showes that promoters more frequently interact with other promoters
than enhancers. In addition, they also showed that some promoters interacting with other promoters
displayes enhancer-related epigenomic features.

• Using a genome wide enhancer-assay, STARR-seq, Zabidi et al. (?) found that some Drosophila
melanogaster randomly fragmented regions with enhancer activity overlapped or where proximal to
TSSs. They suggested that these regions may act as bona fide enhancers.

• Other study compared the activity of hundreds of promoters and enhancers using Massively Parallel
Reporter Assays. The authors showed that some sequences displayed both enhancer and promoter
activities. Interestingly, although promoters displayed more frequently promoter activity, they found
that both enhancers and promoters displayed similar enhancer activity (Nguyen et al., 2016).



32 CHAPTER 5. TRANSCRIPTIONAL REGULATION

Figure 5.23: Transcriptional output increases with interaction between regulatory elements. a) With a low
number of regulatory elements, the gene activity is low. b) With more elements interacting, the gene activity
increases. Figure taken from Andersson 2015 (2015).

• It was shown that in human, ~2-3% of promoters display enhancer activity, by activiating near pro-
moters. These class of promoters are called Epromoters and are mainly related to cell stress induced
upon viral or bacterial infection. In the same study, the authors showed that some promoters gain
the enhancer activity upon an stimulus, suggesting a complex dynamic interaction between promoters
(Dao et al., 2017), see chapter 13.

Even when enhancer and promoters have a large list of similarities, there are a few differences that should
be noted:

• CpG islands, they are common at promoters but enhancers are poor on CpG islands, suggesting that
the TF binsing site composition may differ among these cis-regulatory regions.

• Although enhancers and promoters have bidirectional transcription, the functions of their produced
RNAs may differ. The eRNAs are short, unstable and rapidly degraded. Conversely, the mRNAs
produced are long, stable and exported to the cytoplasm for translation.

Altogether, the evidences described above showed that enhancers and promoters are similar, call for a revision
of established distintion between these elements, specially in the fact that they may be considered as the
same class of regulatory elements, independently if they are near or far from TSSs or the epigenomic features
associated. According to the model proposed by Andersson (Andersson, 2015) the cis-regulatory sequences
often interact in close physical proximity in RNAPII foci, and depending on the context, the elements can
act as either promoter or enhancer, therefore influenting on the activiy of the other physically close elements
in a synergistic way (Figure 5.23).



Chapter 6

Experimental detection of TF binding
events

The mapping of the TF binding sites is key for understand regulatory interactions between TFs and their
target genes, this information can be further used in order to infer transcriptional regulatory networks, to
detect regulons (i.e., a set of genes regulated by a TF), and recently to detect regulatory biding variants
that affect the binding of a TF with consequences on the expression of the regulated genes. The evolution
of the methods to detect TF binding events has progressing since the detection of a handful of TFBSs in a
single experiment, for example using low-throughput methods as EMSA (Cann, 1998) and DNAse footprint
(Galas and Schmitz, 1978) to recently developed high-throughput methods.

Before revising every of the low and high-throughput methods to detect TF binding events, it is important
to note that there are two main differences on these methods:

• Detection of binding events: whilst the low-throughput methods can detect the exact position of the
TF binding site at a single nucleotide resolution, the high-throughput methods do not detect the precise
location of TFBS, but a region of variable size where the TF is bound. In order to generalize these
difference in binding sites and binding regions, I will use the term binding events.

• Throughput: even when the low-throughput methods have a high resolution, they are limited to detect
a low number of TF binding events (~10). By contrast the high-throughput methods can detect from
hundreds to thousands TF binding events in a genome in a particular experimental condition.

• Analysis of results: all the TF binding sites for a particular TF detected with low-throughput methods
can be collected in order to create a TF binding model. By contrast the TF binding regions detected
by high-throughput methods must be processed in order to find the putative TFBSs.

6.1 Low-troughput TFBS detection methods

6.1.1 Electrophoretic Mobility Shift Assay

The Electrophoretic Mobility Shift Assay (EMSA), also known as gel shift assay, is a technique to study
DNA-RNA or DNA-protein interactions. It can be used to determine if a protein (or a set of proteins), for
example TFs, are bound to a DNA sequence of interest.

The logic behind this method is that the interest sequence (with no proteins of RNA bound) has a molecular
weight that can be visualized as a band detected by eletrophoresis on a polyacrylamide or agarose gel, this
band is used as a control. The speed at which the molecules migrates trough the gel depends on their
molecular weight and charge. In case when the tested sequence is bound to another molecule, the molecular
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Figure 6.1: Graphical representation of low throughput method for TFBS detection. (a) EMSA and (b)
DNAse footprint assays.

weight of this complex (e.g., DNA-TF) will be higher and hence the molecules are less mobile than the
control. In the gel this is visualized as a band shifted relative to the control (Cann, 1998) (Figure 6.1a).

With this approach it is possible to evaluate several control sequences (one per lane) in a single run. These
sequences might be bona fide TFBSs and EMSA assay can be used to detect the strongest site (i.e., the
site with the highest affinity). Once a set of of TF binding sequences have been identified, they can be
represented as a TF binding motif.

This method is one of the most used to study individual TFBSs, it can be used to detect bona fide TFBS from
a set of candidate sequences, and can be used as well to classify strong or weak TFBSs for a particular TF.
Their limitations are that a few sites can be evaluated in a single run and that requires a priori knowledge
of the evaluated sequence.

6.1.2 DNAse footprint

Whilst the EMSA can be used to determine the presence/absence of bound proteins in a given sequence,
it does not detect the precise location of the TFBS. To do so, another method can be used, that is the
DNAse footprint assay which take advantage of the molecular properties of the deoxyribonuclease (DNAse),
an enzyme that degrades DNA. Similarly to the EMSA assay, the DNAse footprint is visualized on a gel.

The logic behind this method is that DNA alone (control) will be degraded by DNAse. However, if the DNA
is bound by a protein (e.g., a TF), this union will protect the DNA from DNAse cleavage at the binding site
but the surrounding DNA will be degraded, revealing a pattern (or footprint) on the gel where the DNAse
could not degrade the DNA, in other words, revealing the exact location where a protein interacts with DNA
(e.g., TFBS). The remaining (protected) fragments, can be further isolated and amplified in order to detect
the exact sequence (Galas and Schmitz, 1978) (Figure 6.1b).
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Figure 6.2: TF binding analysis with Protein Binding Arrays. The single-stranded sequences containing the
k-mers are double-stranded by primer extension. The TFs marked with an epitope are added to the PBM,
next an antibody tagged with a fluorophore is added, producing a fluorescent signal in the spot where the
TF is bound to the DNA. This fluorescent signal that is proportional of the binding strength. The k-mers
with highest fluorescence are ranked and can be assembled as a TF binding motif.

In addition to identify TFBSs, DNASe footprint method can be used to detect the minimum amount of
protein (by increasing its concentration) required to observe the DNAse footprint pattern, i.e., the minimum
concentration of a given protein required to be bound to DNA. The limitation of this method is that only
few sites can be evaluated in a single run.

6.2 High-troughput TFBS detection methods

6.2.1 Protein binding Microarrays

The Protein binding Micro arrays (PBM) are the first high-throughput method able to detect in vitro TF
binding events at genome-wide scale and can be used to measure the TF binding affinities independently of
the genome (Berger and Bulyk, 2009; Mukherjee et al., 2004).

The method works as follows (Figure 6.2):

1. All the oligonucleotides of a given size k (e.g., 8-mer for k = 8) are first fixed in an array as single-
stranded. Every k-mer is appears at 16 times in the array and their flanking sequences are different
on each instance.

2. The k-mers are doubled-stranded by primer extension.

3. A TF tagged with an epitope is bound to the DNA on the array.

4. The array is washed to discard non-specific binding events.

5. The TF molecules bound to the array are labeled with a fluorescent antibody.

6. The bound k-mers are detected the fluorescence signal intensity.

7. The signal intensities are used as score to rank the k-mers.

8. The list of selected k-mers can be further converted to a TF binding motif.
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In addition to include the 10-mers, the PBM also evaluate all the combination of gapped 8-mer with at most
4 gaps, this allow the detection of spaced motifs, a common TF conformation observed on bacteria and yeast.

The PBM has the advantage of detect and measure the strength of TF binding events in any genome,
independently of the genome annotation or if the genome of interest has been already sequenced. All the
analysis can be achieved in a short period of time (two days according to the authors).

The simultaneous evaluation of all k-mers allow to detect strong and weak binding events, in addition the
k-mer analysis allow the detection of nucleotide interdependencies, a feature that could not be detected by
motif discovery methods at the time when the PBM were released, although for visualize the results, the
most representative k-mers are summarized as a Position-Specific Scoring Matrices (PSSMs), that simplifies
the representation of these k-mers.

The main limitations of PBMs are the following:

• It does not detect the exact location of TFBSs in the genome.

• Some k-mers with high in vitro affinity could not be relevant in vivo because hetero-dimers of TFs or
interaction of TF with co-factors are not evaluated by PBMs.

• The method used to infer the TF binding motifs should be carefully selected, since distinct methods
could detect different motifs and lead to misleading conclusion about motif heterogeneity (Zhao, 2013;
Badis et al., 2009).

6.2.2 Chromatin Immunoprecipitation (ChIP-x) methods to detect TF binding
events

Chromatin Immunoprecipitation (ChIP) is a method commonly used to study in vivo interactions between
DNA and proteins, the most studied proteins by this method are TFs and histones (Orlando, 2000). ChIP
is the base of recently developed techniques that allow to detect all the TF binding events at a genome-wide
scale (cistrome), this particularity represents and advantage relative to the PBMs, however these methods
are prone to detect a high number of false positives due to the cross-link of transient proteins to the DNA,
and depend on the quality and specificity of the antibody chosen.

The conventional ChIP method is as follows (Figure 6.3):

1. Cross-link: the DNA and its associated proteins (e.g., TFs) are cross-linked (covalently bound) using
formaldehyde or another molecule. This step assures that the DNA-binding proteins remain fixed to
the DNA. This step occurs in living cells.

2. DNA fragmentation: the DNA is randomly fragmented by sonication or DNAse digestion, producing
DNA fragments of ~500bp.

3. Immunoprecipitation: the DNA fragments cross-linked with a protein (the fragments of interest) are
immuno-precipitated (pulled-down) using a protein-specific antibody.

4. Purification: the pulled down DNA fragments are reversely cross-linked in order to release the bound
protein.

5. Enrichment: the DNA fragments that are recurrently pulled down in a significant proportion relative
to a control, in other words, that are enriched, represent those regions of the genome where the protein
of interest is bound in vivo.

This steps are done in two population of cell with the difference that in one population, the protein of interest
(e.g., a TF) is immunoprecipitated but not in the second population, whose results will be used as a negative
control as a reference to detect the enrichment.

It is important to note that ChIP methods are not limited to detect TF binding events, the positioning of
other DNA-binding proteins as histones or RNAPII can also be studied with these methods (Schones et al.,
2011).
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Figure 6.3: Steps for Chromatin immunoprecipitation. Figure from Wu (2009).

The results of these ChIP-x methods have been used to create catalogs of TF binding regions in a genome (e.g.,
REMAP (Griffon et al., 2015)). The integration of such results is useful for the detection of cis-regulatory
modules and cis-regulatory sequences at genome-wide scale, therefore contributing to the annotation of the
analyzed genomes.

In order to detect the TF (or other proteins) binding events, the detection of the enriched regions can be
done using different methods, as sequencing of microarrays.

6.2.3 ChIP-chip

The ChIP-chip technique combines the ChIP method and the detection of the enriched regions is done with
microarrays (chip) (Jothi et al., 2008). This technique follows the first four steps of the ChIP, but the
enrichment is detected as following (Figure 6.4):

6. The enriched DNA regions are denaturalyzed (to a single-stranded (ss)DNA).

7. The ssDNA is hybridized to a ssDNA microarray containing a selected set of sequences (e.g., all the
promoter of yeast, all the intergenic sequences of Escherichia coli K12).

8. Mapping probes to a reference genome in order to identify TF (or other protein) binding regions with
a resolution of ~200bp.

9. The identification of TFBSs should be done a posteriori with motif discovery tools.

Although two of the main issues of this method are that does not bring a precise location of the TFBSs, since
it reports large DNA regions that should be further analyzed by motif discovery tools and the high signal
to noise ratio, two of its main advantages (and is the same for the genome-wide ChIP-based methods) are
that eliminate the bias reported on the PBM, it is possible to infer gene regulatory networks given that the
binding regions can be mapped in a genome, that actually is not possible using the PBM data per se, and
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Figure 6.4: Steps for ChIP-on-chip technology. Figure adapted from Park (2009) and Zhao (2008).

that it permits to discover TF binding events on regions that were unanticipated (e.g., at introns) (Gilchrist
et al., 2009).

6.3 ChIP-seq

Since 2007, the advent of high-throughput sequencing methods marked a milestone in the genome-wide anal-
ysis, with great benefits for the genome-wide detection of TF binding regions through ChIP-seq. The main
methodological difference relative to ChIP-on-chip is that the immunoprecipitated sequences are sequences
and can be directly mapped on a reference genome, without an microarray hybridization step, as consequence
all the binding events can be detected at any position of the genome and are not limited to a selected set of
sequences (Park, 2009; Furey, 2012).

This technique has considerable advantages over its predecessor, the ChIP-on-chip: (i) requires a lower
quantity of input DNA, (ii) the resolution of the results is higher, allowing to detect binding events in
regions of ~150bp, (iii) it is less noisy and (iv) has a higher coverage. See (Park, 2009; Gilchrist et al., 2009)
for a detailed comparison between ChIP-seq and ChIP-on-chip technologies (Figure 6.5).

The ChIP-seq technology follows the same steps for the ChIP but the enrichment is detected as following
(Figure 6.6):

6. The enriched DNA regions (and the control sequences) are sequenced with a short-read sequencer.

7. Every short-read is mapped to a reference genome.

8. The detection of the read-enriched regions (commonly named peaks) are detected using specialized
software known as peak-callers (Steinhauser et al., 2016), that compare the immunoprecipitated reads
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Figure 6.5: Diferences of binding regions length detected by ChIP-on-chip and ChIP-seq. Figure adapted
from Park (2009).

at a particular region relative to the read concentration observed in the control. The selection of the
peak-caller is crucial since some of them are focused on histone and others on TF peaks.

9. The identification of TFBSs should be done a posteriori with motif discovery tools.

ChIP-seq has been used to detect either TF binding events, as well as histone marks, nucleosomes and
RNAPII, the original technique has been slightly modified to detect particular proteins or chromatin mod-
ifications (Landt et al., 2012; Schones et al., 2011). Depending on the analyzed, the peak length can vary,
for example whilst the TF peak use to be narrow (~150bp) the histone peaks encompass hundreds or even
thousand of nucleotides (Figure 6.7).

Nowadays, ChIP-seq is the most popular method for genome-wide detection of TF binding regions, and
thousands of experiments are publicly available at Gene Expression Omnibus (GEO) website. And, as
every method has its own limitations: (i) the fragmentation of the sequences is not equal in the samples,
as consequence, the peak-callers can detect false positive given the uneven distribution of reads; (ii) the
repetitive sequences may be detected as enriched regions; (iii) dependency on several bioinformatic methods.

Every step of the ChIP-seq after the ChIP, from the read alignment, mapping, peak calling and motif
discovery can be analyzed using several tools, with different parameters making the results difficult to
reproduce, although some guidelines (Landt et al., 2012; Bailey et al., 2013) have been proposed, there is no
a standard method to analyse ChIP-seq data.

6.4 ChIP-exo and ChIP-nexus

The ChIP-exo and nexus techniques are extensions of the ChIP-seq method that add one extra step of
exonuclease digestion that degrades the DNA in the 5’-3’ direction except the protected regions (bound by a
TF). As consequence, the detected peaks are shorter than those detected by ChIP-seq, almost reaching the
single nucleotide resolution (Rhee and Pugh, 2011; He et al., 2015). The detection of the binding events are
detected by high-throughput sequencing.

It is important to note that these methods are the state of the art for the in vivo TF binding event detection,
and their resolution is so high that a peaks almost correspond to a TF binding site. This enable to detect
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Figure 6.6: Detection of ChIP-seq peaks after immunoprecipitation steps. Figure adapted from Park (2009)
and Zhao (2008).
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Figure 6.7: Differences of length and loclization of ChIP-seq peaks for TFs, RNAP and histone marks. TF
peaks are narrow and can be located near the gene promoters, enhancer or introns. The RNAP peaks are
long (through the gene body) with a high peak at the gene promoter. The histone peaks are broad, and are
located depending on the modifications (e.g., associated to active genes or associated to promoters). Figure
adapted from Park (2009).

complex binding events, for example dimers, tetramers or closely spaced binding events (Mahony and Pugh,
2015) and even the organization of histones (Rhee et al., 2014), i.e., it was shown that the distribution of
histone marks within the nucleosome may be assymetrical.

Two of the main differences between ChIP-sea and -exo/-nexus are the following: (i) in ChIP-exo, there is
no a background (control), since the free DNA is degraded by the exonuclease, as consequence, the ChIP-seq
peak-callers do not fit the ChIP-exo results because the they usually require the background to calculate
the enrichment of reads in order to detect the peaks. Therefore, another approach is required to detect the
peaks; (ii) Whilst in ChIP-seq the sequences reads corresponds to sites where the protein is not bound, on
ChIP-exo, the sequences reads are those where the TF is bound (Hartonen et al., 2016). See (Mahony and
Pugh, 2015) for detailed revision of the differences between these methods.

The steps for ChIP-exo are the first 4 steps of ChIP whit additional steps as follows:

5. The immunoprecipitated fragments are treated with an exonuclease that degrades the free DNA.

6. Reversal cross-link of the remaining DNA fragments.

7. Sequencing of the fragments with high-throughput methods.

8. Detection of peaks (peak-calling).

9. the discovery of motifs is done a posteriori.

The steps for ChIP-nexus are the first 6 steps of ChIP-exo whit additional steps as follows:

5. The immunoprecipitated fragments are treated with an exonuclease that degrades the free DNA.

6. Reversal cross-link of the remaining DNA fragments.

7. Auto-circularization and amplification of the fragments.
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Figure 6.8: ChIP-exo and ChIP-nexus methodologies. Inset: two examples of the ChiP-exo resolution
compared with ChIP-seq and ChIP-on-ChIp data for the same genomic coordinates. Figure adapted from
Rhee (2011), He (2014) and Zentner (2014).

8. Sequencing of the fragments with high-throughput methods.

9. Detection of peaks (peak-calling).

10. the discovery of motifs is done a posteriori.

The additional circularization and amplification of the detected fragments with ChIP-nexus provides a better
coverage of the sequences fragments than ChIP-exo (He et al., 2015) (Figure 6.6).

Regarding the peak-calling algorithm, this is not detecting enrichment relative to a control. Taking advantage
of the exonuclease footprints, these algorithms search for the ‘borders’ (i.e., the limits of a bound TF at the
positions where the exonuclease stopped) at the sense and antisense strands (Hartonen et al., 2016; Starick
et al., 2015; Wang et al., 2014).

Altogether ChIP-exo and nexus allow to detect allele-specific binding events or regulatory variants with a
higher specificity than ChIP-seq, because the read can be mapped directly on the TF binding site and this
allow to discriminate mutations overlapping the core TF binding motif and those on the flanking positions.
In addition, the exonuclease treatment allow to detect peaks that are either bound by the Tf of interest
and at the same time bound at open chromatin regions. This is not possible with ChIP-seq alone, it should
require for example add additional information of open chromatin (e.g., DNase-seq or ATAC-seq).
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Figure 6.9: Schematic representation of SELEX procedure. Figure adapted from Ray (2010).

ChIP-exo and ChIP-nexus have considerable advantage over ChIP-seq, specially the resolution and the peak
size, this advantage can be useful for detection of allele specific binding, but given that these methods are
more expensive and the amount of work for process the samples is higher than ChIP-seq, their use is limited.
In addition, the additional washes and digestion steps in the ChIP-exo/nexus result in less complex DNA
libraries compared with ChIP-seq.

6.5 Systematic evolution of ligands by exponential enrichment
(SELEX)

SELEX is an in vitro technique that detects oligonucleotides that specifically bind an interest protein or
RNA (Tuerk and Gold, 1990).

The steps of SELEX (Figure 6.8) are the following:

1. Synthesis of oligonucleotide libraries. The oligos are randomly generated and must have the same
length, in addition they are flanked by specific 5’ and 3’ ends that will be used as primers.

2. Exposition: The molecule of interest (e.g. a TF) is exposed to the oligos.

3. Wash: The unbound oligos are removed.

4. Amplification. The bound oligos are amplified by PCR.

5. The previous steps are repeated in several rounds. Every round the strongest oligos bound to TFs are
conserved.

The main limitation of this method is since the oligomer are randomly generated, they might not be exist
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in a given genome and they cannot be mapped. In addition, the iterative selection of strong sites does not
take into account the weak binding sites that also have regulatory roles. Beside these limitations, SELEX
has becoming popular since it allows to test sequences of any size (PBM are limited to sequences of 10nt)
(Jolma et al., 2010).

Initially the SELEX method was used to study a single TF at time, however, Taipale group have recently
developed different high-throughput versions of SELEX as follows:

• High-Throughput (HT)-SELEX: the oligos detected by SELEX are sequenced by high-throughput
sequencers, this approach allow to analyze hundreds of proteins of interest in a single analysis (Jolma
et al., 2010, 2013). This method has been used to determine the TF binding affinities for hundreds of
human TFs.

• Consecutive Affinity-Purification (CAP)-SELEX: similar to HT-SELEX, but selects those oligos inter-
acting with two different TFs at the same time (Jolma et al., 2015).

• Methyl-SELEX: similar to HT-SELEX, with two versions of the oligos, one methylated at the Cytosines
and the other with no methylation. This method is able to detect TF which binding affinity is affected
by the presence of methyl groups at the nucleotides (Yin et al., 2017).

6.6 Detection of open chromatin regions

TFs and other DNA-binding proteins are usually bound at open chromatin regions, the following techniques
were designed to detect all the genomic positions where the chromatin is open. For the scope of this
manuscript I will describe only two methods: DNase and ATAC-seq, since they allow to study TF binding
sites. These techniques are not specific for a given TF (conversely to ChIP-x methods), but they can detect
all TF binding events in a single run, see (Meyer and Liu, 2014) for a review of these methods and their
limitations.

6.6.1 DNAseI-seq

This method could be considered as the high-throughput and in vivo version of the DNAse footprint assays,
since it follows the same principle (accesible DNA sites are sensitive to the DNAseI activity) but it is coupled
with high-throughput sequencing to detect the footprints (Neph et al., 2012; Hesselberth et al., 2009; Boyle
et al., 2011), this method is also refered as digital genomic footprinting (Figure 6.9).

This method has been used in eukaryote genomes, and in a single run is able to detect all the unprotected
(free) regions that could be protected by a bound DNA-binding protein (e.g., a TF), allowing the creating
of DNA accesibility maps for tens of cell lines or genomes for distinct species (Hesselberth et al., 2009). the
detected regions can be selected by their size, in order to focus the analysis in the detection of TF binding
sites.

Taking advantage of the high-throughput sequencing methods, the detected sensitive regions can be se-
quenced with a high depth revealing the signatures of the TF binding at nucletide resolution (Neph et al.,
2012). Within this signatures, the nucleotide conservation has been studied, revealing that the nucleotides
making contact with the TFs are the most conserved in the footprint, and the flaking residues are less con-
served. In addition, this analysis have revealed novel motifs for distinct TFs that were not detected before
by the conventional methods as ChIP-seq (Figure 6.10).

It has been shown that a large amount of the ChIP-seq peaks for a given TF overlaps with the genomic
location of the sensitive DNAseI sites, as consequence, it is highly recommended to have information of the
TF binding and chromatin accesibility. This accesibility information could be useful to discard those false
positive peaks.

The advantages of this method is that all the TF binding events in a given condition can be detected with
a single experiment, revealing novel motifs for certain TFs which suggest unknown regulatory mechanism or
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Figure 6.10: Digital DNase I analysis from chromosomal to nucleotide resolution. Figure adapted from
Hesselberth (2009).

Figure 6.11: Mean cleavage score is anti-correlated with sequence conservation score. Figure adapted from
Hesselberth (2009).
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Figure 6.12: Schematic representation of ATAC-seq and comparison with alternate methods to detect chro-
matin accesibility. Figure adapted from Buenrostro (2013).

unknwon TF-TF interactions (e.g., dimers). Some issues of the method is that its efficiency depends highly
in the sequence depth, which in turn depends on the number of cells and could be expensive. In addition,
the footprint quality is TF dependent and there is an intrinsic cleavage bias, i.e., some regions are more
easily cleaved than others, this bias should be considered to avoid missinterpretation of the found motifs (He
et al., 2013).

6.6.2 ATAC-seq

Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) is a method to
detect chromatin accesibility, alternative to the DNAseI-seq method. This method uses a mutated hyperac-
tive version of the transposase Tn5, which allows to insert specific sequences, called adapters, at the open
chromatin regions. The adapter-containing regions are isolated, amplified and sequenced (Buenrostro et al.,
2013).

Two advantages of ATAC-seq relative to other methods to detect chromatin accesibility (e.g., DNAseI-seq,
MNase-seqm FAIRE-seq) are the following: (i) low input material, ATAC-seq can be performed with 50,000
cells, whilst DNAseI-seq requires at least 1 million cells; and (ii) the ATAC-seq protocol can be ran in ~3
hours, the alternate methods require days (Figure 6.11).

Similarly to DNaseI-seq, the results from ATAC-seq allow to detect TF binding sites at high resolution and
nucleosome positioning as well (Figure 6.11). ATAC-seq also has .

One of the main limitations of ATAC-seq is the bias inserting the adapters to certain sequences (similar to
the enzymatically induced cleavage shown in the DNaseI-seq), although this bias is not fully understood,
it is suggested to use naked DNA as control in order to detect the regions with potential bias (Meyer and
Liu, 2014). Another issue is related with the input number of cells, the addition of too many cells produce
‘under-transposition’ therefore producing large fragments, conversely, with too few cells occurs the so-called
‘over-transposition’ producing short fragments. In addition, to have optimal results, the input number of
cells may vary depending on the analyzed genome or the cell line (Buenrostro et al., 2016).

6.7 Other methods

The methods described are (or have been) the most used for detection of TF binding events, but of course
there are not all the existing ones. More methods less popular are under development, see (Levo and Segal,
2014) for a revision of novel methods to detect TF-DNA interactions. The modified version of some methods
are developed to adapt such methods to deal with genomic limitations of certain genomes (e.g., ATAC-seq
for plant genomes (Lu et al., 2017)).

For the moment the ChIP-exo/nexus are the most precise in vivo methods to detect TF binding events, but
ChIP-seq is the most used method. This is due because ChIP-exo/nexus require greater amount of work
compared to ChIP-seq and also because is a growing methodology.
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Figure 6.13: ATAC seq can be used to study (a) nucleosome dynamics and (b) TF binding sites with high
resolution. Figure adapted from Buenrostro (2013).
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Chapter 7

Bioinformatics methods to study
transcription factor binding sites

Since the discovery that TFs recognize specific sequences in the DNA, two subsequent questions were the next:
(i) how to locate all these sites for a given TF? (ii) Is there a way to model the binding affinities of a given
TF? These questions gave rise to a generation of computational methods that allowed the representation,
discovery and detection of the TFBSs.

As the TFs recognize short sequences (varying from 5-20bp), that are similar but not identical, there was a
necessity to create models to represent a set of sequences bound by the same TF. These models should be
good enough to either detect the already known and unknown binding sites. These models representing the
sequences recognized by a TF, are known as Transcription Factor Binding Motifs (TFBMs), or simply called
motifs.

The key problems to face to answer the previous questions are: (i) de novo motif discovery; the detection
of signal (e.g., short sequences over-represented) that could be associated to a particular TF in a set of
related sequences (e.g., set of regulatory regions of differentially repressed genes in a particular condition),
and (ii) pattern matching; the detection of instances of the TF motif in a whole genome or in a selected set
of sequences.

The first methods to analyze motifs were developed around twenty years ago, at that time the data availability
was scarce and distinct methods to detect the TFBSs were developed, however, as the technologies to discover
the TFBSs evolved and more data was available, for example using Next-Generation Sequencing (NGS)
technologies, many of these computational methods were adapted to handle high-throughput results and
others became obsoletes.

The aim of this section is to describe the evolution of the methods specialized in the detection and analysis of
TFs, this includes the methods to discover the motifs, detection of individual binding sites and comparison
of motifs.

7.1 Representation

The first experimental methods to detect TFBSs were the EMSA and DNAse footprint assay, combining
their results it is possible to detect the exact location of TFBSs (or others DNA-binding proteins) on a small
sets of sequences. The TFBSs identified could be collected and aligned to further generate a model (TFBM)
representing the shared features between these sequences and summarizing an alignment of TFBSs (e.g., the
most conserved positions in the alignment) in either a text string or as a numeric matrix (Figure 7.1).
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The first and simplest model to locate TFBSs is searching for exact matches of an already known TFBS, an
other identical TFBSs could be easily found in a huge sequence, however given that TFs recognize similar
(not always identical) sequences, this method is limited by the available repertoire of TFBSs. However, this
method can be easily extended to represent the TFBM either as a regular expression or using the International
Union of Pure and Applied Chemistry (IUPAC) nomenclature (Comnish-bowden, 1985) (consensus) in order
to use a single letter to represent all the nucleotides found at each column of the TFBS alignment (e.g., R and
Y represents purines (A or G) and pyrimidines (C or T), respectively) (Figure 7.2). Although these models
are simple to understand and can be applied easily to search TFBSs, they are focused in the presence/absence
of nucleotides at each column without considering the importance of nucleotide frequencies, therefore many
functional motifs could not be detected if the consensus is strict.

In order to consider the nucleotide frequencies at each column of the TFBSs alignment, a more refined
model called Position Specific Scoring Matrices (PSSMs) was generated by Stormo (Stormo, 2000; ?). The
PSSMs contain the frequency of each nucleotide at each column (mono-nucleotide model) of the binding site
alignment and therefore every possible sequence with the same size of the PSSM (i.e., the TFBS alignment
length) can be scored (i.e., weighted).

Since this representation could be hard to interpret by human eyes, Schneider developed a method to visualize
the PSSM using their information content (IC), showing the relative importance of each nucleotide at each
position of the alignment (Schneider and Stephens, 1990), this visual representation of the PSSM is called a
sequence logo (Figure 7.1). The IC is based on the Shannon’s uncertainty (Schneider et al., 1986; Shannon,
1948) and reflects the capability of the PSSM to make the distinction between a binding site (represented by
the PSSM) and the background model (Aerts et al., 2007) (the prior nucleotide probabilities, for example,
the estimated nucleotide frequencies in the upstream region of all human TSSs), see Figure 7.3.

The PSSM model is the most used representation of TFBM. This model however, assumes the independence
of each position (i.e., the frequency of a nucleotide on a particular position does not depend on the frequency
of the previous nucleotides) that is true for a large set of TFs, although this observations was meda even
before the creation of the PSSMs []. With current amount of data it is possible to study nucleotide inter-
dependencies for certain TF Families and the mono-nucleotide PSSM model has been extended (e.g., the
di-PSSMs proposed by Kulakovskiy (KULAKOVSKIY et al., 2013), Transcription Factor Flexible Models
(TFFMs) proposed by Mathelier (Mathelier and Wasserman, 2013) and the extension of N-nucleotides pro-
posed by Siebert (Siebert and Johannes, 2016) ), the logo representation has been also modified, although
for the moment, there is no a standard format to represent it (Figure 7.4).

The option to use a mono- or di-nucleotide model depends on the TF biology and additional information
(e.g., structural) can help to choose the correct model to use. For example the detection of TFBSs for
human TFs belonging to E2F, MADS and Zinc-Fingers were improved using di-nucleotide or higher models
(Mathelier et al., 2016; Siebert and Johannes, 2016; Jolma et al., 2013), although for a large set of TFs, they
can be modelled by simpler (mono-nucleotide) models (Zhao, 2013). An important condition of di-nucleotide
models is that they require a large set of TFBSs in order to be trained, for some TFs with a lot of data
available this should not be a limitation, but in other cases, when a TF has a low number of TFBSs (e.g.,
the HipB TF on E coli K12 with only four known TFBSs) a mono-nucleotide model could be used.

7.2 Pattern Matching

The prediction of TFBSs is the main use of TFBMs, here the key problem relies in identify bona fide TFBS
in a set of sequences (varying from a bunch of regulatory sequences to a whole genome) and requires prior
knowledge of the motif (i.e., the PSSM or consensus string) that describes the binding specificity of a TF.

Depending on the method used, the pattern matching methods are classified as string-based and matrix-based.
In the string-based approaches, a single string summarizes a collection of binding sites (Figure 7.1), if this
string is represented with the four DNA letters only (Figures 7.1 and 7.2), it is denoted as strict consensus,
otherwise, if the IUPAC alphabet is used (15 letters), this representation is known as degenerate consensus.
The advantage of use this method is that is easy to program in a computer, as a regular expression to look
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Figure 7.1: A collection of Sox2 binding sites and different motif representations.

Figure 7.2: IUPAC alphabet used to represent DNA sequences.
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Figure 7.3: The 0-order and 1-order background models of promoters of humans, E coli K12 and budding
yeast. Note the low frecuency of CG (1st order) in the human promoters.

Figure 7.4: Examples of mononucleotides and dinucleotides TFBMs for CTCF represented with three dif-
ferent methods. (a) Bayesian Markov Models. (b) Transcription Factor flexible Models (TFFMs) from
JASPAR. (c) diPSSMs from HOCOMOCO.
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for strings matching the pattern, and no requires special software. The weaknesses of this approach is that
does not consider the frequencies of nucleotides at each position and discovered TFBSs with slight variations
that were not considered by the consensus will not be detected.

The matrix-based methods rely on a more complex model, the PSSMs (or its extended versions), this model
considers the relative frequencies of nucleotide at each position of the motif and considers the nucleotide
frequencies of a set of background sequences at the moment to search TFBSs. At each evaluated position,
the following probabilities are calculated: (i) the probability of a TFBS (S) according to the nucleotides
frequencies stored in the PSSM (M):

P (S|M) =
∑

i

f ′
i,j = ni,j + pik∑A

r=1 ni,j + k

and the probability of the same sequence expected from the background model (B):

P (S|B) =
∑

i

pi

where:

A = Alphabet size = 4

ni,j = occurrences of residue i at position j of the matrix

w = matrix width

pi = prior residue probability for residue i

fi,j = relative frequency of residue i at position j of the matrix

k = pseudo weight (arbitrary)

fi,j = corrected frequency of residue i at position j

Wi,j = weight of residue i at position j

Ii,j = information of residue i at position j

The log-ratio of these two probabilities is also called weight score, a positive weight score indicates that a
sequence segment is more likely to be an instance of the motif than an instance of the background (the
genomic context), and could be considered a TFBS.

Wi,j = ln

(
P (S|M)
P (S|B)

)
The background model is the expected nucleotide frequencies in a particular set of sequences (e.g., all human
promoters). A simple model might be assume that the expected nucleotide frequencies are equiprobable
(0.25), however, this assumption is rarely true, because the nucleotide frequency on each organism may vary
according their living environment (e.g., some organisms living in extreme environments (e.g., hot springs)
use to have a high frequency of both cytosine and guanine). The background models can be represented
using Markov chains, where the frequency of a nucleotide depends on the M preceding nucleotides (M is the
Markov chain order). A Markov models of order m determine the frequencies of words of length k = m +
1. A Markov order of 0 is also known as Bernoulli model (frequency of mono-nucleotides), and it assumes
dependency on the nucleotides, however, higher orders do not make this assumption and in addition may
reveal interesting properties of the sequences. For example in mammals, the CpG di-nucleotide is usually
lower than the frequencies of the others di-nucleotides, this dependency can be observed in the first-order
model but not with the zero order (see Figure 7.3 with some examples of background models in distinct
organisms).
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Figure 7.5: Motif scanning and weight calculation. (A) A motif of width W = 12 is scanned in sequence of
length L = 800. The motif is shifted one position (+1) each time, therefore a total of 789 scanned positions
were analized. (B) At each scanned position, two probabilities are calculated: (i) the probability of the
sequence given the PSSM (P|M; red line) and the probability of the sequence given the background (P|B;
blue line). (C) The weight is calculated as the log-ratio between the two previously calculated probabilities.
The higher the weight, the higher likelihood a sequence is an instance of the motif scanned, see true binding
sites highlighted in green have the highest weights. Adapted from Sand (2008)

The choice of an appropriate background model affects the TFBS prediction, this could be observed in
the scanning results when sometimes the predicted binding sites are consequence of a bias in the sequence
compositions of the analyzed regions. To avoid this bias, at least two tools, HOMER2 (Heinz et al., 2010)
and BiasAway (Worsley Hunt et al., 2014) normalize the GC content of the sequences to generate background
models.

In order to detect TFBSs, the PSSM is aligned with the sequence of interest at the left, and a weight score
is calculated at this position, then the PSSM is moved one position to the right, and a new weight score is
calculated. This procedure, known as motif scanning, is repeated until the right side of the PSSM is aligned
with the right side of the sequence (Figure 7.4). The total number scanned positions T in a sequence of
length L with a motif of width W is defined by the next formula:

T = L − W + 1

Once all the position have been scanned, the next step is to find the true TFBSs. Ideally a weight score
greater than zero (positive) should be an indicative of true TFBSs, however in the practice this is not true
(see Figure 7.5 where many positions have a positive weight score, but only two of them are known TFBSs).
The simplest solution is to set a threshold based on the weight (for example, in the Figure 7.5C a threshold
of a weight score >= 10 should be enough to discriminate the true TFBSs from the noise).

Weight-based thresholds are not however the optimal solution: (i) the range of weight scores produced by a
PSSM depends on the PSSM width (i.e., higher weights are observed in larger motifs) (Figure 7.5) and (ii)
usually a set of PSSMs with distinct widths are used to scan the sequences. Setting a single weight-based
threshold (e.g., 5) should be stringent for some PSSMs but loose for others.

The use of p-values is one way to set a threshold based on the risk associated to each predicted TFBS. Here,
the p-value of a given weight score is the probability that the background model achieves a weight score
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Figure 7.6: The range of weight scores depends on the PSSM width.

0.00

0.25

0.50

0.75

1.00

0 3 6 9

−log10(P−value)

S
um

Motif_width

7

9

11

16

20

Cumulative distribution of p−values

Figure 7.7: Cumulative distribution of p-values from motifs with different lengths. Setting the threshold in
a p-value (1e-4, black dotted line) ease the interpretation of TFBS predictions for multiple PSSM in a single
analysis.

greater or equal than the observed value (e.g., given the nucleotide frequencies in the PSSM) (Touzet and
Varré, 2007). This approach associates the weight scores to p-values assuming a Markov order (e.g., 0, 1, 2)
for the background model (Staden, 1989; Turatsinze et al., 2008; Grant et al., 2011). The logic behind this
approach is that some weight scores can be generated by several sequence segments, hence they are more
frequent than other weight scores. The expected frequencies of each possible weight score are calculated and
a distribution of expected weight scores can be obtained. The p-value threshold can be applied in analysis
with tens or hundreds of PSSMs, independently of PSSMs’ width.

Similarly to the weight-based threshold, the p-value based threshold is also arbitrary, but the user, however,
can tune it according the total length of scanned sequences and the accepted level of risk. For example,
setting as threshold a p-value 0.0001, one false positive prediction is expected every 10 Kb (Figure 7.6).
Ideally, a PSSM can be used to scan a whole genome, but giving the genome size (e.g., 1Gb) and the TFBS
size (e.g., 10bp), it is expected by chance that all the 10-mer appears several times in the genome, therefore
even setting stringent thresholds will produce a lot of false positives. In addition, the sequence composition
through the genome changes, for example, the nucleotide frequencies at promoters are not the same as in
the coding or intragenic regions, this justify the selection of an appropriate background model.
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In order to reduce the number of false positives, which actually is one of the main issues in the computational
prediction of TFBSs, the single-TFBS prediction via scanning, which is the most commonly used approach
can be complemented with other sources of information (see (Aerts, 2012) for a detailed revision of methods
and tools to detect TFBSs) :

• Single TFBSs prediction supported by sequence conservation: the predicted TFBSs are se-
lected whether they are in a conserved region across multiple species (i.e., with a high conservation
(phasCons) score) or if the position of the TFBSs is strictly conserved (ortholog position) in two close
species (e.g., -40nt relative to TSS).

• Identification of clusters of TFBSs: this approach is focused on searching a high density of TFBSs
(cluster) from the same (homotypic) or distinct (heterotypic) TFs relative to background sequences. In
metazoa, it has been observed that TFs use to be grouped in high concentration in the cis-regulatory
sequences (e.g., CRM at enhancers).

• Identification of clusters of TFBSs supported by sequence conservation: this approach search
for predicted TFBS clusters that are located in conserved regions across multiple genomes. As every
region of a genome, the cis-regulatory mutate but they are under pressure to conserve their function,
so it is expected to conserve the TFBSs for a group of TFs (e.g., the CRM components) although
the TFBSs might not have the same exact location (ortholog position) (Ballester et al., 2014; Schmidt
et al., 2010; Villar et al., 2015).

• Using chromatin activity data to identify TFBSs : in this approach the idea is to reduce
the number of scanned sequences and focus on those sequences with signal of open chromatin as
DNAseI hypersensitive sites, ATAC-seq, co-activators (e.g., p300 for enhancers), or a particular histone
modification related to gene expression or enhancer activity (e.g., H3K27Ac).

• Using gene expression data : the regulatory regions (e.g., promoters) of a set of differentially
expressed genes are scanned to search TFBSs on CRM. This method works well with bacteria, yeast
and drosophila data, however in other metazoa the cis-regulatory regions goes beyond the promoters
(e.g., enhancers and insulators).

• Using DNA shape information data to identify TFBSs : recent studies have shown that the
observed interdependence between successive nucleotides at the TFBSs are given by physical interac-
tions of the nucleotides (Zhou et al., 2013; Yang et al., 2014; Zhou et al., 2015) and proposed four
DNA structural features: minor groove width (MGW), roll, propeller twist and helix twist. The DNA
structural features of a collection of known TFBSs (i.e., curated from literature or obtained from motif
databases) can be learned and then evaluate whether each individual predicted TFBS (for example,
using PSSMs) is shows the a priori known structural features (Yang et al., 2014) (Figure 7.7).

• Using the motif environment to identify TFBSs : A recent study by Dror and colleagues (Dror
et al., 2015) showed that true TFBSs, for different human TF Families, use to be surrounded by
sequences with similar GC-content. An approach to measure the motif environment of every TFBS
might be developed in order to improve the TFBS (and CRM) predictions.

Although each of these methods contributes in a different way to reduce the number of false positives, a
combination of them (e.g., chromatin activity data + DNA shape information + PSSM scan) might result
in an additive contribution to find true TFBSs (Mathelier et al., 2016; Lu et al., 2017). The methods to
detect TFBSs and some guidelines of how to improve the predictions are reviewed on the next references
(Aerts, 2012; Jayaram et al., 2016; Boeva, 2016).

7.3 Motif Discovery

If we known a set of genes that are co-expressed, we might expect that some of them share a common
regulator (e.g., the same TF bound on their promoters). If this regulator is a TF and there is a PSSM
available for this TF, a simple scanning would reveal the presence or absence of TFBSs; but what happens



7.3. MOTIF DISCOVERY 57

Figure 7.8: DNA structural features in TFBSs. Predicted MGW profiles for a large collection of curated
Hnf4a TFBSs (top) can be represented as a heatmap (middle) showing the narrowness (red) or widerness
(blue) of minor groove at the specific positions of the binding sites. (Bottom) PSSM generated with the
curated sequences and aligned with the structural features heatmap. Adapted from Yang (2013)

when there is no such PSSM ? In these cases, when we guess that a set of sequences might share a signal for
a given TF or other DNA-binding molecules, we can use an approach known as motif-discovery.

The logic behind motif discovery methods is to discover short sequences (also known as oligomers) that
are over-represented in a set of sequences that could be obtained from different methods (?): by PBM, by
ChIP-seq, by ChIP-exo, by SELEX, or by a set of co-regulated promoters. The over-represented oligomers
can be further represented as a PSSM.

The development of novel PSSM representation (e.g., di-PSSM or TFFM) is related with the development
of the motif-discovery methods. Initially, given the low-throughput of the experimental methods to detect
TFBSs (e.g., 10 sequences obtained from EMSA assays) the first motif-discovery methods were developed
to work with a small set of short sequences and therefore the PSSM did not consider the nucleotide inter-
dependencies. Nowadays, with the advent of high-throughput methods, the pattern-discovery methods were
adapted to deal with a big number of large sequences (e.g., ChIP-seq peaks), reviewed in (Boeva, 2016). In
general, pattern-discovery methods are divided in two categories: string-based and matrix-based methods
(see (Ma et al., 2012), (Tompa et al., 2005), (Tran and Huang, 2014), and (Weirauch et al., 2013) for an
evaluation of distinct motif-discovery algorithms).

String-based methods are simple and rely in the count of oligomers of an arbitrary size k (k-mers) (van Helden
et al., 1998; Bailey, 2011). In others words, with k = 7 these methods will search for all the possible 7-mers.
Once the k-mers have been counted, their expected frequencies are estimated given a background model
(Figure 7.9). The choice of background model is crucial, since the most observed k-mers may reflect the
nucleotide composition of the genome. A p-value is calculated for every k-mer and the most significant ones
can be further assembled in order to produce a PSSM. Some examples of programs using these approaches
are RSAT oligo-analysis (van Helden et al., 1998) and DREME (Bailey, 2011).

Some advantages of pattern-based methods are: fast and simple, they use to run fast and their complexity
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Figure 7.9: Detection of over-represented k-mers. A p-value is calculated for every k-mer comparing the
observed (tested) vs the expected (background) frequencies. the over-represented k-mers are clustered and
aligned in order to build a PSSM. Adapted from Thomas-Chollier (2012).

is linear (the running time is proportional to the input data size); exhaustive in the way that all possible
k-mers are evaluated; detection of under-represented k-mers (e.g., enzyme restriction sites); possibility to
report negative results (when no significant k-mer was found); and assembly of several significant k-mer
produce PSSMs larger than the k-mer length. By contrast one weakness of these methods are: k-mers
does not consider the nucleotide degeneracy (variable nucleotide in a specific position of the TFBS), but a
posteriori analysis can be done to study degeneracy.

Matrix-based methods are probabilistic models that maximize the IC or log-likelihood ratio (LLR) of the
resulting PSSM. The logic behind these methods is that if the selected sites to built the PSSM are randomly
chosen, the PSSM produced should not be informative (e.g., a low IC), but if the PSSM is built using the
‘correct’ sites, we expect to observe a high IC. The optimal solution should test all possible PSSMs that
can built from the sequences by aligning x sequence fragments of length w. In this exhaustive solution,
however, the possible number of PSSMs is untraceable, so heuristic techniques (starting by a random seed
pattern) or the expectation maximization algorithm (?) allowing the rapid exploration of the sequences in
order to find PSSMs that can be further iteratively refined until reach a maximum of IC or LLR (Figure
7.10). Some examples of programs using these approaches are XXmotifs (Luehr et al., 2012), ChIPmunk
(Kulakovskiy et al., 2010), Dimont (Grau et al., 2013) and MEME (Bailey and Elkan, 1994) based on
expectation maximization and currently is the most popular motif discovery algorithm.

Some advantages of matrix-based methods are: better description of motif degeneracy than string-based
pattern methods and optimization of the IC or LLR, which is generally a relevant criterion for estimating
the relevance of a PSSM. By contrast, some weakens of these methods are: non-linear running time (e.g.,
MEME has a quadratic complexity); stochasticity makes that not always return exactly the same PSSMs;
at least one motif should be returned, i.e., in cases of sequences with no significant signature a noisy motif
could be found (e.g., low complexity motifs); and possibility to be trapped at a local maximum.

Additional information can be integrated in some motif discovery programs in order to improve the motif
discovery results. This information can be related to the technique used to detect the TFBS or the TF
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Figure 7.10: Workflow of a motif-discovery approach based on Expectation Maximization (MEME). MEME
receives a set of sequences, the width of the motifs to be discovered and the expected number of motif
ocurrences per sequence (0 or more, 1 or more, many). A seed is randomly generated and their sites are
identified, with these new sites a novel matrix is built trying to maximize likelihood of the nucleotides
described by the matrix. The process is repeated until there is a little o no improvement in the likelihood.

biology.

• Positional prior information: the regions whit a high density of reads where TFs use to bind (bigwig
files) detected with a high-throughput experiment, for example ChIP-seq, can be used in order to
focus the search of motifs in a particular region (e.g., at the center or summit of ChIP-seq peaks), this
information improves the quality of the detected motifs relative to the motifs detected without the
priors (Ma et al., 2012; Kulakovskiy et al., 2010; Bailey et al., 2010).

• Spaced motifs: the members of some TF families bind DNA as homo-dimers, where each dimer rec-
ognize a short sequence and there is a spacer between the monomers (dyads), for example, the Helix-
turn-helix family in bacteria or some zinc fingers in mammals. Given that the nucleotides at the spacer
are not always conserved in the TFBS, the motif discovery of these motifs is a challenge and for these
reason at least two motif-discovery programs are dedicated exclusively to found spaced motifs: RSAT
dyad-analysis (van Helden et al., 2000) and GLAM2 (Frith et al., 2008).

• Positionally constrained motifs: the binding of some TFs can be constrained at certain regions (e.g.,
at the center of ChIP-seq peaks (Thomas-Chollier et al., 2012b), upstream the TSSs, downstream the
Transcription Terminal Sites (TTS) (Helden, 2000), or relative to replication origins (Cayrou et al.,
2015)). In these cases, the use of positional priors improves the motif discovery, but in some cases the
prior information might be not available.

Two pattern-based methods that detect positionally constrained motifs without requiring positional prior
information are RSAT position-analysis (Helden, 2000) and local-words-analysis. The position-analysis algo-
rithm aligns the sequences relative to one reference position (start, center or end), divide these sequences in
bins (non-overlapping windows) of a given size, counts the k-mers, and assumes that the distribution of every
k-mer is homogeneously through the bins. Those k-mers which distribution deviates from the homogeneous
distribution will have a high significance, that is calculated using a chi-squared test (Figure 7.10). The
detected k-mers are used as seed to further built PSSMs.

Some advantages of this method are: (i) a predefined background model is not required since the total count
of every k-mer is distributed homogeneously across the bins and this count becomes the expected k-mer
frequencies and (ii) the input sequences can have variable length. The weakens is that the significance of the
k-mers is affected by the bin size and this method is sensitive to small number of sequences.

More applications of the motif-discovery are the so called phylogenetic footprinting and the differential
motif-discovery.

• Phylogenetic footprinting: the use of ortholog sequences in order to discover PSSMs (Wang and Stormo,
2003). It is useful for certain organisms, for example Bacterias, in cases when a TFs has a low number
of reported TFBSs (either the TF has a low number of targets or the TFBSs are unknown). In this
cases, the information is not enough to produce a PSSM with good quality, however, the information
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Figure 7.11: Discovery of positionally constrained motifs with RSAT position-analysis. Method: the se-
quences are aligned relative to their center and are divided in bins of the same width. Every k-mer (blue
box) occurence is counted in the sequences and the total count is distributed homogeneously (green box)
through the same sequences. Given that the sequences have variable size, the count decreases relative to the
center of the sequences. Clustering: The k-mers following the same distribution are grouped. Alignment:
the clustered k-mers are aligned to further build a PSSM. Adapted from Thomas-Chollier (2012).
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Figure 7.12: A set of orthologous regulatory sequences are collected and a motif-discovery program is applied
in order to find PSSMs with the information of multiple genomes. Comparison between a PSSM obtained
from RegulonDB and the PSSM obtained from the phylogenetic footprint. Note the difference in the error
bars between them. Adapted from Medina-Rivera (2010).

of other close related organism (e.g., all the Enterobacteriales or Gammaproteobacteria) can be used
to have a large number of sequences and therefore to discover (multigenome) PSSMs, that in many
cases are better predictors of TFBSs than those PSSM generated using a single organism information
(Figure 7.11). Some programs as RSAT footprint-discovery can do automatically this type of analysis
(Janky and van Helden, 2008). In addition, this approach can be used to infer gene regulatory networks
(Brohée et al., 2011).

Once again, the background model choice is crucial, and given that phylogenetic footprinting uses sequences
from many genomes (that might have different nucleotide frequencies), a solution is to create a taxon-wise
background model from all the regulatory sequences of all the organisms belonging to a given taxon. It is
important to note that given the genomic architecture of bacteria and fungi, where the promoters are the
main cis-regulatory regions and there are few cases of distal regulation, the phylogenetic footprint is easy
to apply on these genomes. In more complex genomes, for example vertebrates, the collection of conserved
sequences can be done using conservation scores to infer conserved sequences (Schmidt et al., 2010).

• Differential motif-discovery: this approach takes two sets of sequences (query and control) and tries
to identify the regulatory elements that are specifically enriched in on set relative to the other. This
method is extremely useful to avoid motifs over-represented given the genome composition and also
avoids the so called low-complexity motifs (artifact motifs usually with repetitive elements). For
example, using a single sequence set for the motif-discovery algorithms might find ubiquitous regulators,
using two sequence set, however, may reveal the specific regulators of the query sequences (Thomas-
Chollier et al., 2012b).

7.4 Motif comparison

After finding a motif (PSSM), we want to know whether the found motif resembles to some previously
identified PSSM. This task is common in the studies including motif analysis, where we want to know which
is the most similar motif (the ‘best hit’) from a collection of motifs provided by the user or public motif
databases as JASPAR (Mathelier et al., 2015) or HOCOMOCO (Kulakovskiy et al., 2016) (Figure 7.13).
The best hit motif could be considered as a candidate TF for the unknown motifs and is necessary for the
further motif annotation. This area of the motif analysis is called motif comparison.



62CHAPTER 7. BIOINFORMATICS METHODS TO STUDY TRANSCRIPTION FACTOR BINDING SITES

Figure 7.13: The motifs discovered using different algorithms are compared with a collection of motifs
provided by the user or taken from motif databases. The unknown motifs are compared and aligned in order
to highlight the similar positions and identify the candidates TFs for the discovered motifs. Adapted from
Thomas-Chollier (2012).
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Figure 7.14: Comparison of two PSSMs. (Right) Example of PSSM alignment, note the differences in number
of sites, motif length and IC content. The best alignment corresponds to an offset of +4 positions, with a
high Pearson Correlation Coeficient (PCC). (Left) Each offset produces a PCC score, the offset with the
highest score is used to align the motifs.

In most of the cases, the motif comparison algorithms assume that the nucleotides at each column of the
TF binding sites alignment are independent and the simplest way to compare two motifs is through their
columns (column-based comparison) until find a position where the columns are the most similar possible.
The column comparison, in addition, allows to align the PSSM in order to visualize the common positions
between the PSSMS. This type of comparison must take into account the next considerations:

• Evaluate all the possible offsets: an score is produced at every possible alignment between the two
compared motifs (even when they are aligned at a single column).

• The forward and reverse complement of the motifs are compared: the PSSMs represent only one strand
of DNA, however, all the possible offset in the reverse complement must be evaluated as well.

• Motifs with different length: since every possible offset is evaluated, the comparison is not limited to
motifs with the same length. Sometimes two motif discovery algorithms could find the same motif,
but the flanks in one motif could be larger than the flanks of the other motif, or a short motif (e.g.,
monomer) could be part of a larger one (e.g., hetero-dimer). Some motif comparison metrics, however,
consider the fraction of aligned columns between two motifs, this information can be useful to match
de novo PSSMs with known PSSMs with a similar length and avoid alignments between short and
large motifs.

• Motifs with different number of sites: PSSM may be built from a small (tens) or large (thousands) sets
of TFBSs. This difference is not a limitation in the motif comparison since the proportion of every
nucleotides considered. However, in the PSSMs built with a small number of TFBSs, the fraction of
nucleotides at each position could be over or underestimated.

• Motifs with different IC: usually the flanks of the PSSM use to have low IC whilst the central positions
(e.g., the core motif) have high IC. The IC can be used as information to compare and align the motif
correctly.

At every offset in both orientations (forward or reverse), the columns are compared and a score is produced,
the offset that maximizes the score is used to align the motifs relative to the most similar positions (Figure
7.14).

In order to compare the PSSM columns, many metrics have been proposed so far (Table 7.1), for example
some groups suggest to use metrics commonly used on bioinformatics as the Pearson Correlation Coeffi-
cient (cor) (Hughes et al., 2000), the Euclidean distance (ED) (Choi et al., 2004), the chi-squared (Schones
et al., 2005), the Jaccard index (Vorontsov et al., 2013), and the Kullback-Leiber divergence (Aerts et al.,
2003), whilst other metrics have been developed specifically for the motif comparison, for example the Aver-
age Log-Likelihood Ratio (ALLR) (Wang and Stormo, 2003), the Sandelin-Wasserman score (Sandelin and
Wasserman, 2004), the Similarity with Information Content (SPIC) (Zhang et al., 2013), the Information
Coverage (Stegmaier et al., 2013), the Bayesian Likelihood 2-Component (BLiC) score (Habib et al., 2008),
the Asymptotic Covariance (Mosta) (Pape et al., 2008), and the k-mer frequency vectors (KFV) (Xu and Su,
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2010). The last to methods do not compare the columns of the PSSMs, and they could be used to compare
the novel PSSM models (e.g., di-nucleotide PSSMs).

Table 7.1: formulae for motif comparison metrics.

Metric Formula
Euclidian Distance (ED)

dEucl =

√√√√ r∑
i=1

w∑
j=1

(nA(i, j) − nB(i, j))2

Pearson Correlation
(cor)

corA,B =
1

r·w
∑r

i=1
∑w

j=1(nA(i, j) − n̄A) · (nB(i, j) − n̄B)
1
n

∑r
i=1

∑w
j=1(nA(i, j) − n̄A)2 · 1

n

∑r
i=1

∑w
j=1(nB(i, j) − n̄B)2

Chi-squared

χ2(A, B) =
∑

K=A,B

T∑
b=A

(nk(b) − ne
k)2

ne
k(b)

Jaccard Index

J(X, Y ) = |X ∩ Y |
|X ∪ Y |

Kullback-Leiber
divergence

KL(X, Y ) = 10 −
∑T

b=A fx(b) · log fx(b)
fy(b) +

∑T
b=A fy(b) · log

fy(b)
fx(b)

2

Average Log-Likelihood
Ratio (ALLR)

ALLR(X, Y ) =
∑T

b+A nx(b) · log
fy(b)

pref (b) +
∑T

b+A ny(b) · log fx(b)
pref (b)∑T

b=A(nx(b) + ny(b))

Sandelin-Wasserman
score SW = 2 −

∑
b∈{A,C,G,T }

(Xb − Yb)2

Similarity with
Information Content
(SPIC)

Sim(M1(X), M2(Y )) = min

{
1,

max {S(P1(X), F2Y ), S(P2(Y ), F1X)}
max {S(P1(X), F1X), S(P2(Y ), F2Y )}

}

Information Coverage

ICov =
∑

i=sx..sx+w−1 ·I(pi
x)∑

k=1..Lx·I(pk
x)
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Figure 7.15: Example of motif comparison computing several metrics. A motif discovered was compared with
the HOCOMOCO human motifs using RSAT compare-matrices. The results are ranked by width-normalized
pearson correlation (Ncor), red rectanlges. Note that the best score of Ncor does not correspond to the best
score of the others metrics (e.g., SW). cor: pearson correlation; Icor: information content correlation; dEucl:
euclidian distance; SW: Sandelin-Wasserman score; and the width-normalized version (Ncor, NIcor). The
last columns of the table (starting with r, for example rNcor) show the rank of the result for the given metric
from highest to lowest.

Metric Formula
Bayesian Likelihood
2-Component (BLiC)

BLIC = log
P

(
n1, n2|p̂1,2)

P (n1|p̂1) · P (n2|p̂2)
+ log

P
(
n1, n2|p̂1,2)

P (n1, n2|pbg)

Asymptotic Covariance
(Mosta) AC(A, B) = lim

m→∞
m−1cov(NA(m) + NA′(m), NB(m) + NB′(m))

The methods to compare motifs have evolved rapidly, however, currently there is no a standard metric to
measure the similarity, and there is a debate of which is the best metric (Habib et al., 2008; Tanaka et al.,
2011), since every metric presents its own drawbacks and these metrics are not directly comparable, some of
them measure correlations (ranging from -1 to +1) and other distances (e.g., ED goes from 0 to values >= 1).
One solution has been to implement software supporting many of these metrics, for example STAMP (Mahony
et al., 2007), TomTom (Gupta et al., 2007), m2match (Stegmaier et al., 2013) and RSAT compare-matrices
(Thomas-Chollier et al., 2011a), using rank-statistics combining the results of several metrics computed in a
run (compare-matrices) or calculating a p-value (TomTom) (Figure 7.15).

One drawback of the column-based comparison methods is that some non-informative columns could be
highly correlated, for example, the flanks with low IC, therefore producing the so-called spurious alignments.
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Figure 7.16: Spurious alignments and how to avoid them. (A) Four sample motifs to be aligned. (B) Setting
a stringent threshold based on a single metric (cor: Pearson Correlation), the motifs could be wrongly
aligned relative to non-informative positions (red rectangle). (C) Using as threshold a metric that considers
the fraction of aligned columns (Ncor: Width-normalized Pearson Correlation) and the cor the spurious
alignments are not observed anymore.

A solution to these drawbacks is consider the fraction of the columns that are aligned, thus a low fraction
might indicate a spurious-alignment and a high fraction might indicate a good alignment, some programs
as TomTom, compare-matrices, and m2match have modified some metrics (e.g., ED, cor) to consider the
fraction of the alignment, avoiding the output of spurious alignments. The results of the comparison could
be normalized by the fraction of aligned columns. Another solution is to calculate several comparison metrics
in a single row, and set a threshold on two or more metrics (Figure 7.15).

Regarding the alignment of the motifs, is different from the alignment of DNA sequences, because it is
focused on short sequences (~20 nucleotides) and because most algorithms for PSSM comparison/alignment
do not consider internal gaps (except STAMP (Mahony et al., 2007), that allows gapped or ungapped motif
alignments). The biological reason for most programs to do not allow internal gaps is because the TF
recognize particular short sequences, a internal gap should change the TF specificity, however this could be
useful to visualize regulatory variants as insertions or deletions (e.g., mutations affecting the TF binding)
(Shi et al., 2016).

Other methods to compare motifs are not based on the columns. In one of them, Mosta, the motif comparison
is based on the putative TFBSs that each PSSM is able to detect. If a pair of PSSM detect the same TFBSs,
they should be similar (Pape et al., 2008), this approach, however, does not allow the alignment of motifs.

7.5 Motif clustering

A common conclusion of the studies related to motif comparison, independently of the metric used, is
the usefulness of the motif comparison results to cluster similar motifs. This task has become more used
since the current amount of PSSM is growing exponentially with the results obtained with high-throughput
experiments.

The clustering of motifs can be used to identify TFs belonging from the same family (Mahony and Benos,
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Figure 7.17: A cluster of motifs belonging to the CEBP family can be summarized as a Familial Binind
Profile.

2007) and further represent the cluster as a Familial Binding Profile (FBP), i.e., a motif that summarizes
all the motifs in the cluster. This representation is possible since the TF families are classified according
to the TF DBDs (Wingender et al., 2013), and combined with the alignment of the motif logos is useful
to visualize the similarities or differences in a motif cluster (Figure 7.16). In order to build the FBP, the
clustered motifs should be aligned and merged (the counts of nucleotides at each column can be summed or
averaged) (Habib et al., 2008), the flanks could be trimmed in order to obtain a FBP with the most relevant
positions (Mahony et al., 2007).

The idea to represent a group of PSSMs as a FBP arose before the high-throughput methods became popular
and that time, the total number of PSSM available was small (around ~100 PSSM for human TFs). However,
nowadays, the number of available PSSM has increased (~600 PSSMs for human TFs) and the studies focused
on TF binding (e.g., using ChIP-seq, ChIP-exo, SELEX-seq) have became popular, making available from
hundreds to thousands of PSSMs in a publication (Forrest et al., 2014; Kheradpour and Kellis, 2013; Jolma
et al., 2013; Weirauch et al., 2014), even more PSSMs than those stored in the databases.

The problem of having thousand of motifs is the redundancy, that could be a consequence of using multiple
tools to discover the motifs, this is recommended since some tools could find a motif that the others do
not, however a particular motif could be found by several tools, returning thus several redundant PSSMs
for the same TF. Every discovered motif should be further compared with hundreds or thousands of known
motifs stored in databases as JASPAR (Mathelier et al., 2015), HOCOMOCO (Kulakovskiy et al., 2016),
FootprintDB (Sebastian and Contreras-Moreira, 2014) or Cis-BP (Weirauch et al., 2014), therefore the
comparison becomes unnecessary for the redundant motifs. The advantage of a motif clustering step before
the comparison should reduce the analysis time, in other words, with the clustering we could identify a FBP
for a set of PSSMs, and only this FBP should be compared with those motifs in the databases (Figure 7.17),
another application that might accelerate the searches on databases is searching motifs by pre-built FBPs.

The redundancy of motifs, however, is also present on motif databases. The biological explanation is that
TFs from the same family share their DBD, hence they recognize similar TFBSs, even when the TFs belong
to distal species (Weirauch et al., 2014), and this is reflected in the motif logo (Figure 7.17), although in some
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Figure 7.18: A single Familial Binding Profile obtained after the clustering of redundant discovered motifs
is compared only once with the motif databases, reducing the analysis time and the number of comparisons.

cases, motifs with similar logos do not belong to the same family and in other cases TFs from the same family
(e.g., zinc fingers) have completely unrelated logos (Figure 7.18). However, in databases, motif redundancy
occurs when the motifs are discovered from different experimental sources (e.g., ChIP-seq, SELEX or PBM)
or with data from close related organism following the phylogenetic footprinting approach (Figure 7.19).
The information of similar DBDs (with a high similarity in their aminoacids) has nede possible to infer
infer thousands of TF binding motifs in tens of eukaryotes genomes starting from a relativelly small sets of
characterized DBDs. The results are available in a database called Cis-BP (Weirauch et al., 2014), that is
at this time the most comprehensive motif database.

Nowadays, the importance of the clustering of motifs is demonstrated on large scale projects as FANTOM5
(Forrest et al., 2014) or ENCODE (Kheradpour and Kellis, 2013), where hundreds of datasets (e.g., ChIP-
seq) are analyzed with several motif discovery tools that produce thousands of motifs. In most of the
cases, in order to cluster the motifs, the authors have developed their own pipelines, starting from the
results of motif comparison, however, currently there are at least seven tools specialized on motif clustering:
Matlign (Kankainen and Löytynoja, 2007), STAMP (Mahony et al., 2007), m2match (Stegmaier et al.,
2013), DMINDA (Ma et al., 2014a), motifstack (Ou and Zhu, 2012), GMACS (Broin et al., 2015) and RSAT
matrix-clustering (Castro-Mondragon et al., 2017).

The motif clustering tools rely on the same metrics to compare motifs, therefore, the clustering tools based on
column comparisons (Matlign, STAMP, m2match, motifstack,and matrix-clustering) use similar clustering
approaches (e.g., hierarchical clustering) and the motifs can easily be aligned, allowing the visualization of
the clusters. Only one tool, GMACS, use a genetic algorithm to cluster the motifs and returns the list of
motifs of every detected group without visualization of the motifs.

Given the large amount of motifs analyzed in a single study and the resulting redundancy of discovered motifs
given the use of several tools, there is a increasing need for efficient tools to cluster the motifs and ease the
further motif analysis. Some of the existing motif clustering tools have some limitations, for example, the
number of input collections of motifs to be clustered and the visual representation of the clusters. For these
reasons, I developed a motif clustering algorithm, RSAT matrix-clustering that present some advantages
over the other existing tools, see Results chapter (Castro-Mondragon et al., 2017).
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Figure 7.19: Example of logos for a) different TFs from different families sharing similar motifs and b)
unrelated motifs for TFs from the same family. Motifs and family information taken from HOCOMOCO.
ETS: Ets-related factors, INF: interferon-regulatory factors, ZF MD: multiple dispersed zinc fingers, ZF 3:
3 adjacent zinc finger factors.

Figure 7.20: Examples of sources of redundancy on motif databases, Jaspar and FootprintDB, using as query
”Sox2”. (1) Distinct experimental methods to detect TF binding. (2) Motifs can come from data of several
species. (3) TFs from the same Family use to have conserved structure of DBD. (4) Difficulties in annotation.
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The clustered motifs (FBP) are useful to represent a group of motifs, for example a family of TFs, or can be
used to reduce the computing time of algorithms affected by motif redundancy (e.g., motif comparison or
motif enrichment), however, I recommend not to use them to scan sequences, since the IC for some positions
could be biased in cases when motifs of different sizes are aligned, one solution could be trim the flanks with
low IC, however, these flanks could be informative for some TF models (Jurk et al., 2016; Gord??n et al.,
2013).

It must be noted that the methods for comparison and clustering of motifs, at this moment are limited to the
mono-nucleotides PSSMs. Only one comparison metric has been upgraded to deal with dinucleotides PSSMs,
that is the Jaccard index method (Vorontsov et al., 2013) implemented by the authors of HOCOMOCO
(Kulakovskiy et al., 2016), as these models become more used, the comparison metrics should be upgraded
in order to deal with them.

7.6 Motif Enrichment

Another common question regarding the motif analysis is when we have a set of sequences and we want to
known if they are enriched by certain TFs (e.g., if a set of sequences thought to be related with interferon
response are enriched with IRF TFs). In this approach, we start from a set of already known PSSMs (e.g.,
a complete motif database as JASPAR). The term enrichment refers to observe a higher number of TFBSs
relative to a control (e.g., random expectation or relative to another set of sequences).

The advantage of using motif enrichment are that (i) a small set of TFs could be analyzed, in a large set
of sequences (e.g., ChIP-seq peaks) without motif discovery or (ii) all the TFs of a complete databases can
be analyzed in a single run, therefore some motifs that are not detected by the motif discovery approaches
could be detected by measuring the enrichment.

In general, the motif enrichment methods can be divided in the following two groups (Figure 7.20):

• Global enrichment: the approach measures the TFBS enrichment in a set of sequences independently
of the location of the TFBSs, specially helpful for analyzing promoters of co-regulated genes. Some
existing tools are PASTAA (Roider et al., 2009), CLOVER (Frith et al., 2004), cisTargetX (Aerts et al.,
2010), AME (McLeay and Bailey, 2010), and RSAT matrix-quality (Medina-Rivera et al., 2011) and
matrix-enrichment (unpublished).

• Positional enrichment: this approach is used to detect enrichment of TFBSs located relative to a
reference (e.g., upstream TSS, center of ChIP-seq peaks) (Bucher and Bryan, 1984). Some existing
tools are CentriMo (Bailey and Machanick, 2012), TFBSLandscapes (Worsley Hunt et al., 2014), ChIP-
Seq tools (Ambrosini et al., 2016) and RSAT position-scan (unpublished).

It must be noted that the enrichment of motifs relies on the detection of individual TFBSs (pattern matching),
and the results depend on the background model and on the threshold to detect TFBS (e.g., PASTAA (Roider
et al., 2009) and CLOVER (Frith et al., 2004)). Others methods do not require a threshold and the enrichment
can be measured for low and high-scored TFBSs (McLeay and Bailey, 2010; Thomas-Chollier et al., 2011b;
Medina-Rivera et al., 2011), in addition different statistical methods can be used or even additional data as
transcriptome information can be also used (Aerts et al., 2010) for a more precise detection of the enriched
motifs.

In the threshold-free methods, the expected number of TFBSs can be estimated with the distribution of
weight scores of a PSSM given a background model, for example, if the TFBSs with strong weight score for
a given PSSM are observed more than expected under the background (Medina-Rivera et al., 2011), then
the PSSM can be considered as an enriched motif. Usually a p-value can be calculated for every PSSM
(McLeay and Bailey, 2010; Thomas-Chollier et al., 2011b) returning a list of top enriched motifs, or the
enrichment could be calculated for every weight score (Medina-Rivera et al., 2011). In these cases, if the
analyzed collection of motifs is redundant (e.g., measuring the enrichment for all the motif databases of
insects), similar TFs could be detected as enriched and the higher the number of analyzed motifs, the higher
correction factor for the multitesting correction used in these programs.
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Figure 7.21: Global and positional motif enrichment. The global enrichment is estimated relative to expected
number of TFBSs, it is specially useful for sequences with variable lengths. The positional enrichment detect
the TFBSs concentrated at certain location of the sequences (e.g., at the center of ChIP-seq peaks of the
same size).

The current global motif enrichment methods are limited to use only one set of sequences, and they have no
visualization of the enriched motifs. To face these limitations, I extended, in collaboration with Alejandra
Medina-Rivera the algorithm RSAT matrix-quality (Medina-Rivera et al., 2011) in order measure enrichment
in several sequences and I created a dynamic visualization interface for the results. This new algorithm RSAT
matrix-enrichment (unpublished), allows to easily detect TF enriched in a particular set of sequences (Figure
7.21).

With the advent of high-throughput experiments, specifically with ChIP-seq, the motif enrichment methods
have been adapted in order to find TFBSs concentrated at certain locations of the sequences (e.g., the center
of the peaks) where it is expected that the strongest TFBS are located. At least three tools have been
developed to achieve this task: CentriMo (Bailey and Machanick, 2012), TFBSLandscapes (Worsley Hunt
et al., 2014) and RSAT position-scan (unpublished). In the positional enrichment, at least for ChIP-seq
data, every sequences is scanned with a set of motifs (discovered or from databases) and only the strongest
TFBS per sequence is considered, therefore the further calculation of the enrichment is based with these sites
(Figure 7.22). This approach, conversely to some global motif enrichment algorithms, requires a threshold
to detect the putative TFBSs.

Given that CentriMo and TFBSLandscapes are focused on finding enriched motifs, I recently developed
position-scan, following the principle of RSAT position-analysis (Helden, 2000), where the input sequences
are divided in bins, but rather than using the k-mer counts, this method counts the predicted TFBSs, and
the expected frequencies per bin (null hypothesis) are estimated by distributing the total homogeneously over
the bins. The main difference between position-scan and the other three existing methods is the capability
to find locally depleted motifs (e.g., under-represented), for example a TF that could alter gene regulation
and therefore their binding has been counter-selected in these sequences (Telorac et al., 2016) or probably
the local depletion of a motif results from the nucleotidic composition of the sequences (Worsley Hunt et al.,
2014). See chapter 10 for a detailed explanation of position-scan algorithm.

Although the current motif enrichment tools work with mono-nucleotide PSSMs only, since the calculation
of the methods is a count problem (and not related directly with the PSSM model), these tools could be
easily extended to use the TFBSs predicted by di-PSSMs.

Motif enrichment methods allow to execute exhaustive search of motifs (e.g., all the vertebrate motif
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Figure 7.22: Motif enrichment on two set of test sequences (HeLa and K562) and one set of control sequences.
The visualization of the enrichment shows two TFs (YY and Jun) are enriched on the test sequences only,
whilst other TFs (UFS2 and SP) are enriched in the three sequence sets

Figure 7.23: Examples of positional enriched motifs by TFBSLandscapes, CentriMo and ChIP-seq tools. In
these algorithms, the enrichment is calculated based on the best hit per sequence. Adapted from Worsley-
Hunt (2014), Bailey (2014) and Ambrosini (2016).
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Figure 7.24: Detection of regulatory variants using PSSMs. (A) Logo for OCT1. (B) The two alleles analyzed,
see position 8. (C) Distribution of all the weight scores with the OCT1 PSSM, note the score difference
between the alleles. Adapted from Macintyre (2010).

databases), this is specially useful when the motif discovery approaches have not the statistical power to
detect motifs (Bailey and Machanick, 2012), although it should me mentioned that enrichment methods are
affected by the motif redundancy.

7.7 Identification of TF binding variants

The most recent application for the PSSMs is in the discovery of regulatory variants (i.e., mutations within a
regulatory region as enhancer, promoters or TFBSs) that might affect the downstream regulation. Although
some of these variants affect others aspects of gene regulation as looping, others directly affect the TF binding
and these can be detected using PSSMs. See (Mathelier et al., 2015) for a revision about the regulatory
variants, their effects in health, and the experimental and computational methods to detect them.

The logic behind this approach is that the variant could be reflected in the weight score produced by a PSSM.
A difference in the weight score between two alleles could indicate a true regulatory variant (Figure 7.23).
One way to detect is calculating the complete distribution of weight scores (or p-values) for a single PSSM
and calculate the difference in weight scores between the alleles A (query) and B (control), this method
is used by the tools is-rSNP (Macintyre et al., 2010), Regsnps (Teng et al., 2012), that are specialized on
regulatory Single Nucleotide Polymorphisms (rSNPs). Others tools as RSAT variation-scan (Medina-Rivera
et al., 2015) and sTRAP (Thomas-Chollier et al., 2011b) can detect SNPs and insertions or deletions at the
TFBSs. Although using PSSM only is the most used method, other methods however have been proposed, for
example combining TFBSs prediction and sequence conservation (Andersen et al., 2008), TFBS prediction
(Shi et al., 2016) and k-mer analysis (Fletez-Brant et al., 2013; Lee et al., 2015) combined with supervised
classification (training a model with a set of regulatory sequences detected with DNaseI-seq versus a set of
random genomic sequences).

It should be noted that the identification of the variant gives only partial information, to complement it
should be also analyzed (when data is available) wheter the variant is located in a locus whose genotype
can be quantified, that is a quantitative Trait Loci (QTL) (Kumasaka et al., 2015). If these variant show
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differences on gene expression (measured as mRNA production) between two alleles, it is considered an
expression QTL (eQTL). So, in addition to find a variant with a significant difference in weight score, this
information should also be supported by the fact that there is a difference on the expression of the gene
associated to such variant.

Depending on where the QTLs are located, they can be classified as local (i.e., if they affect the gene
expression by changing the TF binding in a promoter) or distal (located at enhancers, introns or far away
from their associated gene) (Kumasaka et al., 2015). In addition, depending on the phenotype affected,
others QTLs may be related to local chromatin access (caQTL), identified with DNase-seq, DNase-sensitive
QTLs (dsQTLs) (Degner et al., 2012) or measured with ATAC-seq (Kumasaka et al., 2015); others may
regulate histone marks (hQTLs) (Grubert et al., 2015); others may be CpG sites in which changes in DNA
methylation are associated with genetic variation (Taudt et al., 2016). Of note that either dsQTLs, caQTLs,
meQTLs and hQTLs does not always are eQTLs.

Since the methods to detect regulatory variants mentioned in this section rely on the scanning of PSSMs, the
high rate of false positives is a current issue that should be carefully treated. Threshold selection is crucial
to distinguish real rSNPs from noise. A previous step selecting the threshold for every PSSM and a selected
set of PSSMs related to the SNPs may improve the analysis and reduce the number of false positives, see
(Andersen et al., 2008) for detailed guidelines of in silico detection of regulatory variants.

The detection of regulatory variants is widely studied, specially now that we have data for entire popula-
tions (Qu et al., 2015, Kasowski et al. (2010)) and it is possible to study differences in TF binding from
one individual to another, for example the allele specific binding or groups of individuals from the same
population, the results, however, require further investigation in order to know if a mutation is or not the
cause of some phenotype and it should be noted that association of a regulatory variants with a QTL should
not be considered as a causation of the observed phenotype.

7.8 Resources

The bioinformatic methods to study TFs have been developed since the late 80’s, starting from the study
of a few sequences related in a particular condition to the study of all the TF binding events in a whole
genome. Given this change in the amount of the data analyzed, many of the early developed methods have
been adapted to deal with large data amount, other methods have been specially designed to work with large
data amount but others became obsolete.

Whilst a lot of algorithms (either for motif discovery, motif scan, comparison, etc) have been published and
can be used independently, only a few research projects have been focused specially in the development
of software to study cis-regulatory sequences and currently they are the most highly used in almost all
publications involving motif analysis. These projects (suites) have in common that support a collection of
tools that allows to analyze the motif following a pipeline (i.e., motif discovery starting from input sequences
followed by motif comparison and further identification of TFBSs), allowing thus the creation of workflows
and reproductibility of results (Table 4.1). At the moment only one of these projects, AUTOSOME, has
expanded their methods to work with di-nucleotide PSSMs.

Since every one of these suites contain different tools for motif discovery (or other tasks), some tools in one
suite could be better for an specific task than those tools in the other suites, therefore in order to have
complementary results, their output can be combined (i.e., a workflow including tools from different suites).
The users are not limited to use a single suite for all their analyses (Shi et al., 2016; Kuttippurathu et al.,
2011).

7.8.1 Motif databases

In addition to those projects focused on the development of tools for TF motif analysis, others no less
important projects are the databases for TF binding motifs and their binding sites. The development of
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Table 7.2: Description of some motif analysis resources.

Name Year Website PMID Description
RSAT 2003 rsat.eu 25904632 Tools to analyze TF binding motifs, download sequences and create negative controls for motif analysis.
TOUCAN 2005 goo.gl/lH7kR1 15980497 Motif analysis tools, specialized in finding cis-regulatory modules.
MEME 2006 http://meme-suite.org/ 25953851 DNA, RNA, and protein motif analysis tools.
HOMER 2010 homer.ucsd.edu/homer/ 20513432 Tools for analyze high-throughput results and TF binding motifs.
AUTOSOME 2010 http://autosome.ru/ NA Tools for analyze TF binding motifs, including dinucleotide PSSMs.

these databases (e.g., collecting the TFBSs) started even before the development of many tools for motif
discovery, at that time, the search of TFBSs was based on manual curation of the literature, giving rise to
popular databases as TRANSFAC (Wingender et al., 1996, Kaplun et al. (2016)) and RegulonDB (Huerta
et al., 1998; Gama-Castro et al., 2015), for eukaryotes and bacteria, respectively. At the beginning, they
stored TFBSs only, however nowadays they have been extended to include PSSMs and other regulatory data,
however, still from literature curation.

Currently there are tens of motif databases either public or private, some of them specialized in a single or
few organisms, and others containing information from different taxa. The methods to obtain the TFBSs
and PSSMs vary on each databases. See Table 7.2 for a summary of the most representative motif databases.

In the case of RegulonDB, at least for E coli K12, given that most of its TF use to recognize a small number
of TFBSs, the manual curation is possible, however, for metazoas to gather data of high quality (i.e. with
references to the literature for individual binding sites might be time-consuming and all the databases (except
TRANSFAC) obtain the data from the results of high-throughput methods (e.g., ChIP-seq, PBM, SELEX-
seq). The advantage of literature curation is that the TFBSs are validated experimentally (i.e., bona fide
TFBSs) but it is time consuming, by contrast, the data obtained from high-throughput experiments contains
a higher number of TFBSs but with a lot of false positives (Weiss et al., 2013).

Many databases as JASPAR, RegulonDB, Cis-BP or HOCOMOCO are constantly updated, and the increase
in the amount of information can be observed through their releases (for example JASPAR 2016 (Mathelier
et al., 2015) doubled its size relative to the 2014 version (Mathelier et al., 2014)).

This is expected, since during the time each version is released more TFs are studied or those TF with
available data are studied in new conditions (e.g., cell lines) or using distinct experimental methods (e.g.,
binding regions detected by ChIP-seq or ChIP-exo), and therefore PSSMs with low quality can be improved
with more data. However the cost of these updates is the redundancy in the motif databases. Similarly,
some recent studies have produced as many data (e.g., discovered motifs) as the data stored in the motif
databases (Jolma et al., 2013, 2015; Whitaker et al., 2015), however these studies are not focused in produce
and maintain a database, although the discovered motifs are freely available.

As the databases become bigger and other studies produce large number of PSSMs, it is difficult to choose
a single database to use it in a study, the simple solution should be create a meta-database (database of
databases) containing all the published motifs, at least two meta-databases are available: Cis-BP (Weirauch
et al., 2014) and FootprintDB (Sebastian and Contreras-Moreira, 2014), although they contain different
information. Cis-BP integrates information from several motif databases and contains its own motifs, some
of them obtained directly from PBM data and other inferred motifs with similar PSSM and high amino-acid
conservation of their DBD in several species, currently is the biggest motif database. FootprintDB contains
16 motif databases and for most motifs include the structural information of their DBD, the binding sites used
to build the PSSMs and can be considered as a public alternative for the commercial database TRANSFAC
(Matys, 2003).

Although the meta-databases store thousands of motifs, the content is specially redundant. One motif (e.g.,
Sox2) can appear several times, since any merged collection could have its own version of this motif. A
partial solution is to show the motifs grouped by similarity, as part of my thesis, I developed an algorithm
RSAT matrix-clustering [ref] that presents a dynamic visualization of similar motifs, and might be integrated
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Table 7.3: Description of representative motif databases for vertebrates, insects, plants and bacteria. Hs:
Homo sapiens, Mm: Mus musculus, Dm: Drosophila melanogaster, At: Arabidopsis thaliana, Ec K12:
Escherichia coli K12, Multi: databases with data from multiple species, V: vertebrates, P: plants, I: insects,
B: bacteria.

Taxon Database Size Sp PMID Description
V Cis-BP 734 HS 928674 Inferred TFBSs from multiple (>300) species. Incorporates data from other TFBM databases
V ENCODE 2065 HS 22955990 Discovered TFBMs for the ENCODE TF ChIP-seq datasets
V epigram 589 Hs 25240437 TFBMs identified in ChIP-Seq data of six histone modifications and DNA methylation valleys in five human cell-types
V Fantom5 novel 169 Multi 24670764 Motifs discovered in clustered CAGE TSS (not matching known motifs)
V Hocomoco 641 Hs 26586801 Hand-curated Human TFBS models constructed by integration both low- and high-throughput methods
V Hocomoco 427 Mm 26586801 Hand-curated Mouse TFBS models constructed by integration of both low- and high-throughput methods
Vs homer 332 Hs 20513432 Human TFBMs discovered in public ChIP-seq and promoter data
V hPDI 437 Hs 19900953 Human TFBMs discovered from PBM (until 2009)
V JASPAR 519 Multi 26531826 Curated TFBMs derived from published collections of experimentally defined TFBSs for eukaryotes
V HumanTF 818 Hs 23332764 Human TFBMs obtained by high-throughput SELEX and ChIP sequencing
V HumanTF_dimers 664 Hs 26550823 TFBMs of human TF pairs that bind cooperatively to DNA obtained by CAP-SELEX analysis
V Uniprobe 386 Ms 25378322 TFBMs generated by universal protein binding microarray (PBM) technology
P ArabidopsisPBM 108 At 24477691 Arabidopsis TFBMs discovered from PBM
P Athamap 84 At 18842622 Genome-wide map of potential TFBSs in Arabidopsis
P Cistrome 862 At 27203113 Arabidopsis TFBMs discovered from DAP-seq data
P Cis-BP 309 At 928674 Inferred TFBSs from multiple (>300) species. Incorporates data from other TFBM databases
P JASPAR 227 Multi 26531826 Curated TFBMs derived from published collections of experimentally defined TFBSs for eukaryotes
I dmmpmm 41 Dm 19605419 Drosophila TFBMS discovered from DNAse-seq data
I DrosphilaTF 61 Dm 17238282 Drosophila promoter motifs discovered using NestedMICA
I Cis-BP 361 Dm 928674 Inferred TFBSs from multiple (>300) species. Incorporates data from other TFBM databases
I FlyFactorSurvey 652 Dm 21097781 Drosophila TFBMS discovered from the bacterial one-hybrid system (B1HS)
I idmmpmm 39 Dm 19605419 Drosophila TFBMS discovered integrating data from different experiments (Selex, BH1S, etc)
I JASPAR 133 Multi 26531826 Curated TFBMs derived from published collections of experimentally defined TFBSs for eukaryotes
I OntheFly 608 Dm 24271386 Drosophila TFBMS discovered from DNAse-seq data, SELEX-seq and B1HS
B RegulonDb 93 Ec K12 26527724 TFBMs obtained from literature curation
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in databases in order to browse the motifs, see the Results for the publication and a summary of this
algorithm. This is relevant specially for those methods affected by redundancy, as motif comparison and
motif enrichment, where the algorithm already include the motif databases to ease the analysis (Mahony
et al., 2007; Gupta et al., 2007) (i.e., the users have not to download the motif database since it is part of
the program).

7.8.2 All in one: motif analysis for high-troughput data

At this point I have presented separately the different algorithms for motif analysis. Nowadays, however,
several workflows have been developed to automate the application of successive analysis steps on large
of collections of sequences with large collection of sequences (e.g., ChIP-seq peaks). These programs, are
modularly designed to achieve the next steps (Figure 7.24):

• Nucleotide composition: the mono or di-nucleotide composition of the input sequences brings informa-
tion about the expected discovered motifs.

• Motif discovery: several algorithms are ran in the same sequences in order to discover motifs in an
exhaustive way. This is recommended, but the cost is redundancy in the results.

• Motif comparison: the discovered motif are compared with motif databases (e.g., JASPAR, HOCO-
MOCO) in order to find the most similar motif(s) and annotate the discovered motifs. This step, in
addition, reflect if the experiment were well performed, for example, if the motif though to be expected
is not found could indicate an error in the experimental procedure.

• Motif scan: the discovered motifs are scanned in order to find their putative TFBSs.

• Motif enrichment: the enrichment of motifs (global or positional) from one or more databases can be
measured in order to reveal motifs that were not detected in the discovery step.

• Motif clustering: the motifs are grouped by similarity in order to ease the analysis and detect the
redundancy.

• Visualization: the TFBSs can be exported as tracks to be visualized in a genome browser.

At least four of these workflows have been used for several studies: MEME-CHIP (Machanick and Bailey,
2011; Ma et al., 2014b), RSAT peak-motifs (Thomas-Chollier et al., 2012b,a), XXmotifs (Luehr et al., 2012)
and Dimont (Grau et al., 2013), see (Lihu and Holban, 2015; Tran and Huang, 2014) for a revision and
comparison of several ChIP-seq motif analysis workflows. The most popular of these tools is MEME-ChIP
that is a workflow that combines results from MEME (Bailey and Elkan, 1994), DREME (Bailey, 2011)
and CentriMo (Bailey and Machanick, 2012). However given the algorithm complexity of its core program
MEME, the motif discovery is limited to 600 sequences randomly selected from the input, in addition the
input sequences should have the same length which is a limitation for some studies; XXmotifs has limitation
in the amount of input data but not on sequence length, by contrast peak-motifs have no limitation on
amount neither on sequence length, although it lacks of clustering and enrichment of motifs from databases.

The development and maintenance of these workflows allows the reproductibility of motif analysis results
and the annotation of motifs in an automatic way. A general limitation of these workflows is that they start
from the sequences and not from the raw data (e.g., short or long reads from sequencers), although this topic
is outside of the scope of this thesis, it is important to note that the results of the peak-caller algorithms
affect the downstream motif analysis. Another limitation, although now some solutions started to arise, is
the annotation of the regulatory regions (i.e., the association of the regulatory region with its target gene.
At this time there is only one motif analysis workflow under development involving the complete process
from peak calling to peak annotation, that is CRUNCH (Berger et al., 2016), although for the moment is
only accessible via a web interface.
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Figure 7.25: Schematic representation of a workflow of motif analysis in large sequence datasets. Adapted
from Thomas-Chollier (2012).



Chapter 8

RSAT 2015: Regulatory Sequences
Analysis Tools

8.1 Motivation and state of the art

RSAT (Regulatory Sequences Analysis Tools) is a modular suite of software tools dedicated to the analysis
of cis-regulatory sequences and TF binding motifs. This project is led by Jacques van Helden since 1998 (van
Helden et al., 1998) and it has been constantly updated with new programs at every release (Van Helden
et al., 2000; van Helden, 2003; Thomas-Chollier et al., 2008, 2011a; Medina-Rivera et al., 2015). The added
programs are adapted to the current necessities of the scientific community working with motif analysis. The
programs from the RSAT suite can be used online (http://www.rsat.eu/), as stand-alone via command-line,
remotely via SOAP/WSDL Web services, as a VirtualBox virtual machine or instantiated on the Institut
Français de Bioinformatique (IFB) cloud.

The first version included two programs for motif discovery (Van Helden et al., 2000) and three years later
new programs were added allowing users to run complete motif analysis, including the visualization of the
results and the option to retrieve sequences (i.e., regulatory regions) for a large number of organism, specially
bacterial genomes (van Helden, 2003). The 2008 version had 30 programs including matrix-scan one of the
first programs to scan sequences with PSSMs using the p-values as threshold rather than the weight scores.
In addition this version included software to create negative controls and phylogenetic footprinting. Between
the 2008 and the next version in 2011, started the era of high-throughput experiments producing large
amount of data to analyze, for this reason the 2011 RSAT version included several programs focused on the
high-throughput experiment results as peak-motifs that is a workflow for analyze large sequence sets, other
programs to download sequences from the UCSC server, and software to compare and evaluate the quality of
motifs (Thomas-Chollier et al., 2011a). The latest version was released in 2015 and contains 52 tools, among
the added tools there is a program to detect and download regulatory variants and a program to cluster
TF binding motifs. In this version, part of the work was focused on ensuring the reproductibility of the
results, for example using virtual machines with a particular version of RSAT. In addition, since the number
of genomes growth considerably since the last RSAT version, the RSAT servers were separated by taxon-
specific servers containing the genomes and other information for their different organisms (Medina-Rivera
et al., 2015).

The main applications of RSAT are the following:

• Motif discovery, appropriate to high-throughput data sets like ChIP-seq, PBM or groups of promoters
of co-expressed genes.

• TF binding motif analysis (quality assessment, comparisons and clustering).
• Motif scanning either to detect single TFBSs or cis-regulatory modules.
• Comparative genomics for a large set of organisms in different taxa.
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• Analysis of regulatory variations.
• Creation of background models and negative controls for motif analysis.

RSAT is one of the most comprehensive suites of programs for analysis of cis-regulatory sequences, it goes
beyond the motif analysis and also includes programs for comparative genomics and detection of regulatory
variants. In addition of this versatility of programs, RSAT is compatible with the output of external tools
(thanks to inter-conversions between file formats). The accessibility of RSAT made itself a choice for biologists
with little or no experience in programming skills, in addition, the modularity of the programs allows to
create complex workflows for motif analysis, including external tools.

8.2 Contribution

Since 2014 I have contributed to the development of new tools and maintenance of RSAT. As part of this
PhD thesis I developed three new tools for motif analysis: matrix-clustering (Castro-Mondragon et al.,
2017), position-scan, and matrix-enrichment. The output of these tools is highly interactive and are the first
programs in RSAT with interactive visualization features, using the D3 javascript library (Bostock et al.,
2011), which ease the interpretation of the results.

These three novel tools can be used for the analysis of high-throughput data: matrix-clustering (Castro-
Mondragon et al., 2017) (Chapter 11) can group similar and redundant motifs returned by motif discovery
tools, the other tools, position-scan (Chapter 11) and matrix-enrichment detect the positional and global
motif enrichment, respectively. The last two programs are new developments posterior to this publication
and will be published elsewhere.

As part of the maintenance of RSAT, I have contributed to this project by collecting and updating the set
of motif databases that is used by several tools (e.g., compare-matrices peak-motifs).

8.3 Conclusion

In this thesis, most of my results were obtained using programs from RSAT, some of these programs were
developed by myself and others were already available. In my opinion, RSAT is the most comprehensive suite
for tools focused on cis-regulatory sequences, my reasons to think this and choose RSAT for my projects are
the following:

• Modularity of the RSAT programs: the programs can be called individually or integrated either in
automated workflows for motif analysis (e.g., peak-motifs) or on in-home developed workflows using
workflow managers such as snakemake (Köster and Rahmann, 2012) or script languages (e.g., bash,
make)“]. for example, the tool matrix-clustering was partially made by parts of existing tools (e.g.,
compare-matrices).

• Multiple genomes supported: the RSAT programs are not limited to a handful of model organisms,
during my thesis I worked with data from humans, flies, mouse, bacteria and plants. The organism
information can also be downloaded via RSAT programs which save time for the further analysis.

• Inter-compatibility: the RSAT suite can be used with input from other tools (e.g., MEME or HOMER),
this allow to analyze data combining distinct tools.

The development of software dedicated to motif analysis and specially the distribution and maintenance
of this software in projects as RSAT, is specially useful for the scientific community that is not familiar
with programming, the interaction between biologists and bioinformaticians is key for the development of
user-friendly, simple and accessible interfaces. By the side of the software developers the main task is to
ensure the reproductibility of their results.



Chapter 9

RSAT matrix-clustering : dynamic
exploration and redundancy reduction
of transcription factor binding motif
collections

9.1 Motivation and state of the art

Transcription Factor Binding Motifs (TFBMs), simply called motifs, are models describing the binding
specificity of a transcription factor (TF). Such motifs are generally obtained by aligning the sequences
of several binding sites, and summarizing the nucleotide frequencies per position (Stormo, 2000). Motifs
are commonly represented as position-specific scoring matrices (PSSMs) and visualized as sequence logos
(Schneider and Stephens, 1990). Although the adequacy of PSSMs has been questioned for some particular
TF classes (Weirauch et al., 2013; Jolma et al., 2013; Mathelier and Wasserman, 2013; Keilwagen and Grau,
2015), e.g. in cases of dependencies between adjacent nucleotides, they are still the most widely used method
to represent the binding specificity of a TF.

Thousands of motifs are available in motif databases which constitute key resources to interpret functional
genomic resources. A well known issue of these databases is the motif redundancy resulting from various
sources (Mathelier et al., 2014):

• For a given TF, multiple PSSMs can be built from different collections of sites characterized with
alternative methods (i.e. DNase-Seq, SELEX, PBMs, ChIP-seq).

• The binding specificity is often conserved between TFs of the same family.

• Some databases contain PSSMs obtained from orthologous TFs in different organisms.

• Some unrelated TFs recognize similar DNA motifs.

Another example of motif redundancy is observed in the results of motif discovery tools, where is recom-
mended to use several motif discovery approaches in order to have robust results (Thomas-Chollier et al.,
2012a; Ma et al., 2014b). While some motifs could be discovered exclusively by a given tool, most will be
found independently by different tools, hence producing redundant motifs with small variations in length
and/or nucleotide frequencies at some positions.

In addition, it must be noted that current large projects as ENCODE (Kheradpour and Kellis, 2013) or
FANTOM5 (Forrest et al., 2014) can produce thousands of motifs, even more motifs than those stored in a
single databases (with the difference that these produced motifs are not curated as in the motif databases).
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This constant increase in the number of motifs and redundant collections represents a real challenge for the
community. Which collection to use? How important is the overlap between the different collections?

Many efforts have been done in order to reduce motif redundancy using the results obtained from motif com-
parison. The most similar motifs can be grouped in clusters of motifs. therefore a cluster can be represented
as a single motif (also known as Familial Binding Profile (FBP) (@ Mahony and Benos, 2007)). Currently
a handful of tools are specialized in motif clustering: STAMP (Mahony et al., 2007), m2match (Stegmaier
et al., 2013), MATLIGN (Kankainen and Löytynoja, 2007), GMACS (Broin et al., 2015), DMINDA (Ma
et al., 2014a) and motIV (Bioconductor package). However, each of these tools presents some limitations:
analysis based on a single metric, restricted number of input motifs, static visualization interfaces.

During this thesis I developed a tool called matrix-clustering as part of RSAT motivated by the need of a
tool to cluster similar motifs with a strong visualization component. In addition to the clustering step, the
motifs are aligned and the clusters are represented in different ways (alignment of consensuses and motif
logos, heatmaps) and many collections can be used as input, if this is the case, matrix-clustering will compare
as well the input collections measuring the similarity among them. The final result is an interactive website
where the users can browse the motifs including a file with the non-redundant motifs.

There is a large list of metrics to measure motif similarity, usually the tools are limited to use the results
from a single metric, in matrix-clustering many comparison metrics can be used in order to group the motifs,
and we demonstrated that a threshold to separate the motifs based on two similarity metrics makes a better
separation of the motifs than thresholds based on a single metric.

In the publication (Castro-Mondragon et al., 2017), we show four applications of matrix-clustering:

• Integration of results from multiple motif discovery tools (RSAT peak-motifs (Thomas-Chollier et al.,
2012b,a), MEME-CHIP (Machanick and Bailey, 2011; Ma et al., 2014b), and HOMER (Heinz et al.,
2010)) in a single analysis. The alignment of motifs allowed us to detect many binding variants (homo
and hetero-dimers) for the TF OCT4 (Tantin et al., 2008).

• Integration of results from motifs discovered in 12 ChIP-seq peaksets. The results integrate the infor-
mation in a visual way to detect motifs found exclusively in one peaksets or motif found on peaks of
functionally related TFs.

• Identification of motifs belonging to the same TF Family. We used the motifs from HOCOMOCO (Ku-
lakovskiy et al., 2016) because they include the TF Family information taken from TFClass (Wingender
et al., 2013). We show that a complete collection of motifs can be reduced to a set of non-redundant
motifs, where each motif represent a FBP. We also noted in these results that some families as Zinc
Fingers, have one motif for each of its members, according to the reported wide variability of binding
motifs (Najafabadi et al., 2015).

• Creation of taxon-wise motif databases. We collected several motif collections for insects, plants and
vertebrates. For each taxon, the total number of collected motifs was reduced to a non-redundant
collection with ~20% of the original size. We measured the inter-similarity between the databases and
we noted that although many of them have similar content, few databases has unique content. As part
of the results, we made available the non-redundant motif collections.

9.2 Contribution

I developed the algorithm integrating the results of compare-matrices (Thomas-Chollier et al., 2011a) with
the further clustering step and the partition of the resulting tree. I also developed the interactive website with
advice from Morgane Thomas-Chollier and Denis Thieffry. I wrote the first version of the manuscript and
participated in the correction of the revised versions. I collected the motif databases used in the publication
and made them available through the RSAT website (Medina-Rivera et al., 2015).
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9.3 Conclusion

I think that as long as large collections of motifs are produced or handled, the clustering will become
a necessary step for the analysis, it is specially useful for approaches affected by redundancy as motif
comparison and enrichment. At the moment, there is only one tool that shows the motifs grouped by
similarity, that is MEME-ChIP (Ma et al., 2014b) but the results of others tools as RSAT peak-motifs
(Thomas-Chollier et al., 2012a) can be improved showing the motifs by clusters.

Regarding the motif databases, currently there is only one database, that is RegulonDB (Gama-Castro
et al., 2015) for Escherichia coli K12 transcriptional regulation, where the TFs are shown by similarities or
by TF Families, however for the remaining databases a clustering of motifs should be useful to highlight
the similarities of motifs. I believe that the interactive visualization of matrix-clustering can be integrated
in maintained databases as JASPAR (Mathelier et al., 2015), HOCOMOCO (Kulakovskiy et al., 2016) or
FootprintDB (Sebastian and Contreras-Moreira, 2014) in order to improve the searching of motifs.

For the moment, matrix-clustering does not support the di-PSSM, only one tool MACRO-APE (Vorontsov
et al., 2013) is able to compare di-PSSM. As long as novel models become more used (e.g., di-PSSMs
(KULAKOVSKIY et al., 2013; Mathelier and Wasserman, 2013; Siebert and Johannes, 2016) or PSSMs for
methylated sequences (Viner et al., 2016; Ngo and Wang, 2016)) I plan to extend the algorithm to analyze
these new PSSMs.
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Chapter 10

RSAT::Plants: Strategies for Motif
Discovery in Plant Genomes

10.1 Motivation and state of the art

During this thesis I participated in the publication of two protocols for motif discovery in plant genomes,
one for ChIP-seq peaks and other for promoters of co-expressed genes. Plants are well known for the high
percent of repetitive elements (RE) distributed along their genomes (Biscotti et al., 2015), this particularity
makes a challenge for the motif discovery on these genomes, therefore more strategies should be considered
than only use de novo motif discovery tools.

For the first protocol, dedicated to motif analysis in ChIP-seq peaks (Castro-mondragon et al., 2016) we
highlight the importance of the following points:

• Use distinct motif discovery approaches (e.g., over-represented and positionally biased k-mers) in the
same analysis, although both approaches can find redundant motifs, each one brings different informa-
tion about the found motifs.

• Use clustering of motifs approaches a posteriori. Once the motifs have been found the redundant motifs
can be discarded in order to create a non-redundant set of motifs.

• Use of negative control for motif discovery. In the case of plant genomes, REs are randomly distributed
in the genome, including the cis-regulatory regions (e.g., promoters or enhancers). In these cases, the
negative controls could help to discard those motifs found as consequence of the REs but that may not
bind any TF.

Those motifs found either on the sequences of interest (query) and in the negative control sequences, may
result from the repetitive sequences but also for over-represented k-mers in the whole genome. Therefore we
could consider them as non-specific of the query sequences and then discarded, they are discovered simply
because the genome composition and might not correspond to binding motifs.

For the second protocol, dedicated to motif analysis on promoters of co-expressed genes (Contreras-moreira
et al., 2016) we highlight the importance of the following points:

• Use distinct motif discovery approaches (e.g., over-represented k-mers and spaced k-mers) in the same
analysis.

• Use of negative control(s) for motif discovery (e.g., several replicates of motif discovery in groups of
randomly selected genes of the same size as the input co-expression clusters).

• Use the motif comparison metrics as criteria to select relevant motifs. For example, the distribution
of comparison scores of the discovered motifs against motif databases has higher values than the
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distribution of scores of the motifs found at random sets of genes).

• Use the distribution of the discovered motif scores (e-values) either in promoters and controls as
criterion to select significant motifs.

Regarding the negative control used, for the ChIP-seq analysis, we randomly selected fragments from a
reference genome with the same same length as in the sequence query set. Given that these sequences
contain a mixture of different types of genomic regions (i.e., including coding, intergenic, centromeric, or
cis-regulatory regions) we expect to discover (or better if we do not) different motifs relative to those motifs
found on the query sequences. For the analysis of promoters of co-expressed gene sets we used promoters
of randomly selected genes, therefore, although they are still regulatory regions we do not expect to find
over-represented motifs, since these promoters are not functionally related.

The use of negative control should it is an empirical validation of the statistical model, and can serve as
evaluation of the specificity of the motifs. When we use a set of sequences as negative control, some the
motifs could be discovered in both sequence sets, a further clustering of motifs will allow to visualize the
common motifs between both sequence sets.

The motif comparison is normally used to annotate the discovered motifs using already known motifs stored
in databases as FootprintDB (Sebastian and Contreras-Moreira, 2014), JASPAR (Mathelier et al., 2015) and
Cis-BP (Weirauch et al., 2014), in one of these protocols we showed that the distribution of comparison
scores can be used, in combination with the significance of the discovered motifs as criterion to detect
relevant motifs and discard those that could be artifacts (e.g., low complexity motifs with repetitions of a
single nucleotide).

The distribution of motif scores might suggest if a motif is an artifact, since we expect highly significant scores
for motifs in functionally related promoters, and low significant motifs obtained from random promoters. If
we find more significant motifs in random promoters than in the query promoters, this could indicate such
artifact motifs.

These protocols shows complementary strategies not applied in the previous protocol of RSAT peak-motifs
(Thomas-Chollier et al., 2012a) or RSAT oligo-analysis (Defrance et al., 2008), these strategies can be
considered for users interested in plant or other genomes with a high percentage of REs.

10.2 Contribution

For these protocols I developed a workflow for motif analysis integrating several tools from RSAT, in col-
laboration with Claire Rioualen and Bruno Contreras-Moreira. We used the software make to make it
reproducible by the users on command-line. I participated on the writing of the two protocols and generated
some of the figures.

10.3 Conclusion

The analysis of motifs goes beyond running a program and find the motifs, depending on the genome analyzed
the users could be confronted with some additional challenges (e.g., ER), that can be intrinsic to the genome
studied, therefore a single motif analysis tool cannot overcome these challenges by itself. However, using the
results from separated tools can be helpful to complement and give robustness to the results. In addition,
including negative controls and clustering of motifs improves the quality of the analysis.

At this time ChIP-seq analysis workflows as RSAT peak-motifs (Thomas-Chollier et al., 2012b), MEME-
CHIP (Machanick and Bailey, 2011) or XXmotif (Luehr et al., 2012) can be expanded to include these
strategies: (i) the clustering of motifs (only MEME-CHIP does this task) or (ii) the generation of negative
controls to improve the analysis. The importance of integrate these strategies on automated workflows ease
the analysis for scientist not familiar with programming.
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These protocols showed that the comparison of motifs can be used not only to compare and annotate the
motifs, but also to reduce the motif redundancy and help to identify motifs found on two conditions (e.g.,
ChIP-seq peaks and negative control regions), the integration of this strategy in RSAT peak-motifs will be
helpful for the users.
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Chapter 11

RSAT position-scan : identification of
transcription factor binding sites with
positional bias

11.1 Motivation

During this thesis, I have collaborated with two groups of biologists interested in the regulatory mechanism
of human promoters with enhancer activity (Spicuglia’s team) and detection of regulatory motifs on ChIP-
seq peaks for Polycomb Repressive Elements and for some TFs (Cavalli’s team). In both collaborations, it
was required to detect motifs that were locally enriched (near promoters for the first project and at the
center of the peaks in the second one). Since the current available tools are specialized on ChIP-seq peaks,
and only consider the strongest TFBSs per sequence for their statistical analysis I developed an algorithm
called position-scan that detect TFBS heterogeneously distributed in the sequences, therefore detecting either
enriched and depleted motifs in a single run.

Given that TFBSs with low or median affinity may contribute to the regulation, this algorithm considers
all the TFBSs (not only the strongest per sequence). In addition, several representation of the positional
enrichment are shown, and the motifs are clustered based on their positional distribution. The results
are displayed in a dynamic interface that allow users to select motifs based on their positional profile,
significance or enrichment/depletion of the TFBSs. This algorithms was used to detect motif enriched in
human promoters with enhancer activity (see chapter 13).

The following text correspond to a draft that I wrote and I plan to publish it after my PhD defense.

11.2 Introduction

Transcription Factors (TFs) are DNA-binding proteins that control gene expression, they bind short se-
quences called TF binding sites (TFBSs) that are usually located at cis-regulatory regions. The TFBSs can
be detected in silico using Position Specific Scoring Matrices (PSSMs, simply called motifs), that are models
to represent the TF binding affinities.

The advent of high-throughput technologies allows to detect experimentally thousands of sequences bound
by a TF at genome-wide scale, for example using ChIP-seq (Jothi et al., 2008) or ChIP-exo (Rhee and
Pugh, 2011). In these cases the TFBSs can be analyzed relative to a reference position, e.g. peak center,
peak summit. Approaches known as positional motif enrichment focus on the detection of over of TFBSs at
certain positions of the analyzed sequences. Although currently is a popular approach, the idea is not recent
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and was originally used to study TF and RNAP binding motifs near promoters (Bucher and Bryan, 1984),
i.e., relative to Transcription Start Site (TSS).

For example in ChIP-seq and ChIP-exo, it is expected that most TFBSs for the ChIP-ped TF are found
(positionally biased) around the peak summit, i.e. the position with of maximal read coverage (Bailey and
Machanick, 2012; Worsley Hunt et al., 2014; Thomas-Chollier et al., 2012b). Similar examples of positionally
constrained motifs are observed around TSSs at gene promoters (Whitaker et al., 2015), at the upstream
region of introns (Yeo et al., 2007) and replication origins (Cayrou et al., 2015). Although the enrichment
of motifs is commonly studied, recent studies have noted that the depletion (under-representation) of motifs
at certain positions has consequence in gene regulation (Whitaker et al., 2015; Telorac et al., 2016).

The measure of enrichment/depletion is based on the detection of TFBSs from collections of already known
motifs, for example JASPAR (Mathelier et al., 2015) or HOCOMOCO (Kulakovskiy et al., 2016), making
the analysis exhaustive for thousands of motifs, which is a big difference relative to the matrix-based motif
discovery methods.

Currently, specialized software has been developed to detect motif positionally constrained at ChIP-seq peaks
based on a library of known motifs, that are CentriMo (Bailey and Machanick, 2012) and TFBSLandscape
(Worsley Hunt et al., 2014). These tools are focused on the positional motif enrichment, however they do
not consider motifs that are positionally depleted. To the best of our knowledge, there is only one motif
discovery method that detects under-represented positionally constrained motifs (and over-represented as
well), that is position-analysis (van Helden et al., 2000; Thomas-Chollier et al., 2012a).

Given the recent observation of positionally depleted TFBSs and the lack of tools to detect them, we
developed position-scan, a method to detect either enriched and depleted positionally constrained motifs in
large set of sequences. It can be used to detect positionally constrained motifs in a single set of sequences or
differentially in two sets (query and control). This program can be used to analyse de novo motifs detected
in high-throughput sequences (e.g., ChIP-seq) or a complete motif database. position-scan was developed
at the end of this thesis work and it has not been published yet, however it is already publicly available
is part of the RSAT suite (Medina-Rivera et al., 2015) and can be used via website or as stand-alone tool
(command-line) for its integration in workflows of motif analysis.

11.3 Material and methods

11.3.1 Input formats

position-scan supports different motif formats: TRANSFAC (default), MEME, HOMER, JASPAR, etc. The
users can easily inter-convert the motifs to different formats using the tool RSAT convert-matrix (Thomas-
Chollier et al., 2011a). Given that users would scan many motif databases (e.g., JASPAR, HOCOMOCO)
in a single analysis, one or more motifs collections (in separate files) can be provided, each one with a given
collection name to ease the identification of the motifs in the results.

11.3.2 Motif scan

The sequences are scanned using the program RSAT matrix-scan (Defrance et al., 2008; Turatsinze et al.,
2008) with a user-specified threshold on p-value (default: 10−3) to detect the TFBSs. By default position-
scan generates background models from the input sequences using a Markov chain of order 1, whose the
transition frequencies are estimated from the input sequences. This capability to use a Markov background
model is important to account for interdependencies between adjacent nucleotides (e.g. CpG depletion in
vertebrate genomes, poly-A or poly-T enrichment in non-coding sequences). Users are also allowed to load
custom background models.

position-scan can be operated in two modes: (1) consider all the detected instance of each motif; (2) similarly
to CentriMo (Bailey and Machanick, 2012) and TFBSLandscapes (Worsley Hunt et al., 2014), it only consider
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Figure 11.1: Graphical representation of distribution of TFBSs: enriched and depleted at the center of the
sequences and the null hypothesis where the TFBSs are distributed homogeneously.

the best hit per sequence. In addition, the user can select to scan both or a single strand, in cases when the
orientation of the sequences must be considered.

11.3.3 Chi-square test

The sequences are divided in bins (non-overlapping windows) of a given size (default: 25nt). For each motif,
the number of instances per bin is counted. The sum of TFBSs is then divided by the number of bins in
order to obtain an estimate of the expected counts per bin under null hypothesis (i.e., assuming that the
sites are distributed homogeneously throughout the sequences).

Ek =
∑

TFBS

k

where Ek corresponds to the expected sequences at the bin k.

Those counts deviating the null hypothesis correspond to positionally constrained motifs (enriched and
depleted) (Figure 11.1). In case the expected number of TFBSs does not satisfy the chi-square applicability
(the expected number at each class should be at least five), this warning is indicated in the results. The
p-values produced by the chi-square test are corrected by the number of analyzed motifs, producing thus an
e-value.

The chi-squared formula is defined as follows:
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χ2 =
k∑

i=1

(Oi − Ei)2

Ei

where O and E correspond to the observed and expected counts (i.e., TFBSs), respectively, at each bin k.

When two sequences are given as input, the frequencies of one of these sequences are used as expected
frequencies for the chi-square conformity, and are calculated as follows:

Ek =
∑k

i=1 TFBSk∑
k

where Ek corresponds to the frequency of TFBSs at the bin k.

11.3.4 Motifs and sequences for the case studies

For study case one I used the complete JASPAR (Mathelier et al., 2015) vertebrate collection (519 motifs).
I downloaded the IRF1 and STAT1 ChIP-seq peaks from ReMap (Griffon et al., 2015), in bed format. The
peak summits were extended 300bp to each side of peak centers and the sequences were retrieved from the
Human genome version hg19 using RSAT fetch-sequences.

11.3.5 Implementation

position-scan is implemented in Perl and R. The dynamic profiles are implemented in HTML5 using the
JavaScript library C3 (http://c3js.org/). Motif logos are produced using weblogo (Crooks et al., 2004).

11.4 Results

11.4.1 position-scan overview

position-scan takes as input a collection of motifs and one (single-set analysis) or two (test versus control)
sets of sequences of identical lengths. The sequences are first scanned with the motifs and then divided in
bins of a given size.

In single-set mode, the program runs a chi-squared homogeneity test, in order to detect motifs whose TFBSs
are distributed heterogeneously in the sequences relative to some reference position (start, center, end),
assuming a homogeneous distribution of the TFBSs. This test enables to detect not only local enrichment
but also local depletion or more complex heterogeneous profiles (e.g. two enriched peaks separated by a local
depletion).

An alternative modality is to specify a control set of sequences in addition to the query sequence file, in
which case the positional profiles of TFBSs of the control sequences are used as expected frequencies for a
chi-squared conformity test.

The visual interface is dynamic and enables users to select a subset of motifs based on their significance,
the shape of their profiles, select clusters of motifs with similar profiles, or perform a selection of motifs of
interest based on their individual profiles (Figure 11.1).

http://c3js.org/
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11.4.2 Visualization

position-scan produces three different ways to visualize the positionally constrained motifs: TF binding
profile plot, qualitative distribution of TFBSs and heatmap with positional profiles.

11.4.2.1 TF binding profiles

For each motif, the number of TFBSs per bin is summed and the result is normalized by the number of
sequences with at least one TFBSs. All the profiles are shown in an interactive plot where the users can
choose which profile to display (Figures 10.2 and 10.3a).

11.4.2.2 Qualitative distribution of TFBSs

For each motif, all the predicted TFBS are shown in a scatter-plot where the abscissa corresponds to the
position relative to a reference (i.e., the center) and the ordinate to the significance (−log10(pval)). The
TFBSs are coloured according their significance: a dark color for the most significant a a lighter color for
the less significant (Figures 10.2 and 10.3b).

11.4.2.3 Heatmap of positional profiles

All the positional profiles are clustered and represented as a heatmap (Figures 10.2 and 10.3d). The profiles
are clustered based on the Pearson Correlation Coefficient and the ward method is used as linkage rule for
the hierarchical tree.

11.4.3 Case study 1: positionally constrained motifs in STAT1 ChIP-seq peaks

STAT1 is a TF involved in interferon pathway that can form homo- and hetero-dimers with members of its
TF Family (STAT). I chose to study since the dimers may have differences that can be reflected in the motif
analysis of positionally enriched motifs (Ehret et al., 2001).

I ran position-scan with a merged collection of ChIP-seq peaks made from several experiments taken from
ReMap (Griffon et al., 2015) and the 519 matrices from the complete JASPAR vertebrate motif collection
(Mathelier et al., 2015). The results sorted by chi-squared p-value ranked Stat4, Stat3 and Stat1 as the motifs
deviating most significantly from the homogeneous distribution, followed by motifs from the JUN/FOS family
and CTCF.

The distribution of TFBSs coloured by significance (Figure 11.4) highlights those motifs whose strongest
TFBSs are concentrated at certain location, for example, at the center of the sequences. Regarding the Stat
motifs, in the cases of Stat1 and Stat4 which have similar motifs, the strongest TFBSs are concentrated at
the center of the peaks (Figures 10.4a and 10.4c), similarly for the Stat1::Stat2 dimer, although it has a
different motif (Figure 11.4b). The strongest TFBSs for Stat6, however, are not concentrated at the peaks
center (Figure 11.4d). In order to visualize the differences between the Stat1, Stat4 and Stat6 motifs I used
matrix-clustering (Castro-Mondragon et al., 2017), the alignment shows that Stat1 and Stat4 have a 2bp
spacer whilst Stat3 has a 3b spacer. This difference is reflected in the distribution of TFBSs (Figure 11.4e).

11.5 Discussion

I present RSAT position-scan a method to detect motifs with positional bias in large set of sequences
aligned on some reference position. This method can be typically used for motif analysis of ChIP-seq or
promoters where a high concentration of TFBSs are expected to be found at around peak centers or near
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Figure 11.2: Schematic flow chart of the position-scan algorithm. The program takes as input one (or several)
collection(s) of motifs, and one or two sequence sets with the same length. Each motif is scanned and the
sequences are divided in bins of the same lenght. For each motif the program sums the TFBS counts per bin
and the total is distributed homogeneously (null hypothesis) and both distributions (observed and expected)
are compared using a chi-square test. The distribution of TFBSs is visualized in three ways: (i) the binding
profile showing the frequency of TFBSs per bin, (ii) the heatmap and clustering of the binding for all the
motifs, and (iii) the distribution of TFBSs separated by classes (from weak to strong TFBSs) of every motif.
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Figure 11.3: Examples of position-scan results for STAT1 ChIP-seq peaks. (a) Example of TFBS binding
profile for the motif STAT4. (b) Qualitative distribution of TFBSs of STAT4 motif in the sequences. Every
class of TFBSs is coloured from yellow (weak sites) to blue (strong sites). (c) Examples of binding profiles for
four different motifs: JUN FOS and STAT4 enriched at the center; Lhx3 depleted at the center; TBX2 follows
and homogenoeus distribution. (d) Heatmap with clustering of binding profiles showing motifs enriched and
depleted at the center of the peaks. The colours at left indicate the clusters.
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Figure 11.4: Distribution of TFBSs for a) Stat1, b) Stat1::Stat2, c) Stat4, and d) Stat6. The color scale
indicates the -log10(pvalue) of the predicted TFBSs. e) Alignment of Stat motifs. Note the 2 and 3bp spacer
and the difference in the distribution of strongest TFBSs.
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TSSs, respectively. position-scan follows the similar principle than position-analysis (van Helden et al., 2000;
Thomas-Chollier et al., 2012a), both programs detect positionally constrained motifs, however the later is a
motif discovery algorithm whilst position-scan use the counts of TFBSs from known motifs and can be used
as a topological motif enrichment tool. For such large data sets (e.g. 10,000 peaks of 600bp each), the usual
multiple testing corrections would impose a stringent threshold on TFBS p-values. However, the rationale
of the tool is not to assess individual binding sites, but to scan sequences with a relatively lenient threshold
(e.g. 10−3), and to test, for each motif, the positional distribution as a whole.

Currently three others methods already exist (CentriMo (Bailey and Machanick, 2012), TFBSLandscape
(Worsley Hunt et al., 2014) and ChIP-seq tools (Ambrosini et al., 2016)), however they focus on enriched
motifs and they only consider the top-scoring TFBSs per sequence for their enrichment statistics. In this
method, the analysis is not limited to the best match per sequence, but it considers all the TFBSs. In addition,
given that position-scan uses the homogeneous distribution of TFBSs as the null hypothesis, the method
can detect not only local enrichment, but also local depletion or more complex patterns (e.g. alternances of
enriched and depleted windows).

The visualization of the results allows to identify those TFs following similar binding profiles for their TFBSs
in the analyzed sequences, which often result from similarities between the motifs themselves, but can also
reflect interactions between TFs recognizing distinct motifs acting in the same condition (e.g., cooperative
binding or co-occurrence of TFs). In some cases, the observation of both enriched and depleted motifs might
suggest the mutual exclusion of two factors as was observed by Telorac and co-workers (Telorac et al., 2016),
where a set of sequences (although not bound by TFs) avoid the binding of the glucocorticoid receptor. Note
that this vision is a bit too mechanistic. Depleted motifs may be of poor-complexity, and their depletion
reflects a compositional bias of the regions bound by a factor (a context-dependent composition) rather than
the specific exclusion of a particular factor.

In the current version, position-scan returns motifs based on the global shape of their position profile. In
future releases I will update the program to also report the particular windows of enrichment/depletion.

There is no obvious way to choose the optimal bin size, which depends on the sequence lengths, their numbers,
and the p-value threshold, and should thus be chosen on a case-per-case basis.

Since this tool can scan thousands of motifs from several databases (e.g., JASPAR, HOCOMOCO), this tool
could be affected by motif redundancy by making the running time longer, however, the chi-squared p-values
can be sufficiently small to afford for multiple testing corrections.

11.6 Conclusion

The detection of positionally constrained motifs is of special interest for the motif analysis of large sequences
data sets as ChIP-seq (or similar technologies) and motifs locally enriched/depleted relative to a reference
position (e.g., promoters, replication origins). This program can be used validate discovered motifs or to
identify already known motifs that were not find by motif discovery algorithms.
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Chapter 12

RegulonDB version 9.0: high-level
integration of gene regulation,
coexpression, motif clustering and
beyond

12.1 Motivation and state of the art

RegulonDB (http://regulondb.ccg.unam.mx) is one of the most useful and important resources on bacte-
rial gene regulation, as it integrates the scattered scientific knowledge of the best-characterized bacteria,
Escherichia coli K12 in a database that organize large amounts of data since 1998 (Huerta et al., 1998).

One particularity of this database is that the information is curated from the literature manually and semi-
automatically, and it integrates genomic annotations for transcriptional regulation, as transcription start and
termination sites, TF binding sites and miRNAs, in a strong visualization of these elements in the genome.

Initially, RegulonDB was thought as a catalog of TFBSs for Escherichia coli K12 TFs but later other layers
of information were integrated and nowadays RegulonDB also includes metabolic and functional annotation
of the genes.

Regarding the TFBSs stored in RegulonDB they are taken from literature and from low-throughput methods
as EMSA or gel retard assays, that bring the exact location of the TFBSs on the bacterial genome, in other
words they are made from bona fide, yet validated TFBSs which can be used to built PSSMs. It is important
to note that RegulonDB does not include PSSM discovered with motif discovery tools, that is the normal
procedure for some databases as JASPAR (Mathelier et al., 2015) or HOCOMOCO (Kulakovskiy et al.,
2016).

In every version of RegulonDB, as more TFBSs are collected, the PSSM are improved and novel PSSM are
made available. The current version (9.0) contains 93 PSSMs. In order to built a PSSM, the minimum
number of TFBS must be four, giving to each nucleotide the chance to appear at least once on each position
of the PSSM (Medina-Rivera et al., 2011).

Since 1997 there is a strong collaboration between the RSAT and RegulonDB teams, many RSAT programs
have been developed using RegulonDB information, e.g., oligo-analysis (van Helden et al., 1998), dyad-
analysis (van Helden et al., 2000), and matrix-quality (Medina-Rivera et al., 2011).

Given that the number of PSSM stored in RegulonDB is growing, the latest version of RegulonDB includes
many tools to visualize information, among them there are two motif browsers based on the TF Families
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(Pérez-Rueda et al., 2015) and from motif similarity using matrix-clustering. This visualization highlight the
similarities (and differences as well) for TF belonging to the same family.

12.2 Contribution

I ran matrix-clustering with the novel RegulonDB PSSMs and the output was integrated in RegulonDB
version 9.0. In addition, I also implemented a PSSM tree browser where the logos of each PSSM are depicted
in the leaves. clicking on the logos the users can go directly to the PSSM information website. I contributed
with the writing of the manuscript on the part related with the clustering of motifs and the motif browser.

12.3 Conclusion

For the analysis of bacteria genomes, in my opinion the high-throughput experiments have not the same
success as they have for metazoa genomes, of course that many genome-wide experiments have been done,
but they are scarce, and there is no one database collecting all the information, but currently RegulonDB
team is working on the integration of these results in the database.

The scarce of high-throughput methods is mainly due to the biology of bacterial TFs, some of them recognize
a handful of sequences in the genome, and a genome-wide experiment could not be required for such TFs.

Although currently RegulonDB contains 93 PSSMs, if the results from high-throughput experiments are
integrated we will observe an increase in the number of PSSMs (including redundant motifs discovered from
different algorithms and experiments). The integration of a browser based on motif similarity or TF Families
will allow to easily integrate novel discovered PSSMs and will ease the search of TFs.

The integration of matrix-clustering in RegulonDB shows that other motif databases, even those containing
larger number of PSSM can take advantage of the interactive output in order to browse the motifs by
similarity.



Chapter 13

Genome-wide characterization of
mammalian promoters with distal
enhancer functions

13.1 Motivation and state of the art

In mammals, transcriptional regulation is driven by cis-regulatory sequences and regulatory proteins (TFs,
RNAP, GTFs) and RNAs. Regarding the cis-regulatory sequences that positively regulate gene expression,
they have been classified according their distance relative to the TSS of their associated genes: the promoters
and enhancers regulate genes proximally and distally, respectively (Kim and Shiekhattar, 2015).

This basic definition of promoters and enhancers has been challenged by recent studies showing similarities
among them, for example both enhancers and promoters can recruit TFs and RNAP, produce bidirectional
transcripts, and are associated with open-chromatin histone marks (Andersson et al., 2014; Pennacchio
et al., 2013; Andersson et al., 2015). Altogether these evidences suggest that promoters might play enhancer
functions (i.e., regulate distal genes) and it has been demonstrated in isolated cases, however it is unknown
what fraction of promoters may have enhancer activity involved in distal regulation.

The massive detection of enhancers have evolved from detection of enhacer activity on synthetic sequences
(Kheradpour and Kellis, 2013) to novel technologies capable of measure the activity in genomic conditions.
One of these novel methods, STARR-seq (Arnold et al., 2013; Muerdter et al., 2015), allows to detect
sequences with enhancer activity based on the sequence itself (i.e., by function) and not by epigenomic
features or location criteria, however this method was developed and tested in Drosophila genomes or in
human cell lines using BACS (Arnold et al., 2013), it has not been adapted to study larger genomes.

In order to study genome-wide enhancer activity in mammals, Spicuglia’s team adapted the STARR-seq
with a capture step that allows to enrich the interest regions before measure the enhancer activity, the new
method is called capStarr-seq and was validated in mice cell lines (Vanhille et al., 2015).

Now, for the current project we used the capStarr-seq method in order to measure the enhancer activity
for all the humans promoters (~20,000) defined by RefSeq in two cell lines (HeLa and K562). We found
that 2-3% of the promoters display enhancer activity in the analyzed cell lines. These TSS-overlapping
enhancers (hereafter called Epromoters) display specific genomic and epigenomic features that differs from
either enhancers and promoters, in addition these Epromoters were associated with TF and genes related
to stress response. Even a small set of Epromoters was identified after stimulation of interferon. By using
CRISPR/Cas9 deletions we demonstrated that Epromoters are involved in cis-regulation of distal gene
expression in their natural context, therefore functioning as bona fide enhancers (Dao et al., 2017).
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We suggest that regulatory elements playing a dual role as transcriptional promoters and enhancers might
ensure rapid and coordinate regulation of gene expression upon stress response.

13.2 Contribution

This work is a collaboration between experimental biologists and bioinformaticians, many of the re-
sults obtained from bioinformatic analysis were further experimentally validated. My contribution
was at the bioinformatc side, here I developed a workflow to analyze the Epromoter sequences com-
bining several tools from RSAT (Medina-Rivera et al., 2015), this workflow was implemented in
snakemake (Köster and Rahmann, 2012) and allow to reproduce the results showed in the publication
(github.com/arielgalindoalbarran/Epromoters).

The motif analysis was separated in the following steps:

• Motif discovery: The motifs were discovered with RSAT peak-motifs (Thomas-Chollier et al., 2012b,a),
which run several motif discovery algorithms in the same analysis.

We discovered many already known motifs (e.g., Jun, YY), however the analysis was not comprehensive
since it did not include the information about the already known motifs stored in databases, for this reason
we change the analysis to a motif enrichment approach, which enable us to study all the known TF motifs
in a single run, rather than limit the analysis to the motif discovery approach.

• Motif clustering: We used the motifs stored in JASPAR vertebrates (Mathelier et al., 2015) (519 motifs)
and HOCOMOCO human (Kulakovskiy et al., 2016) (622) motifs because their motifs are curated and
built from high-throughput data, however as we merged these databases we have redundant motifs. In
order to avoid such redundancy we run matrix-clustering and obtained 489 non-redundant motifs that
were used for further analysis in this project (e.g., detection of regulatory variants).

• Motif enrichment: We looked for motifs enriched at the Epromoter region (-250 to +50 relative to
the TSS), therefore a positional motif enrichment approach should be the solution. However when
this project started, the tools for positional enrichment (CENTRIMO (Bailey and Machanick, 2012)
and TFBSLanscapes (Worsley Hunt et al., 2014)) were specialized on ChIP-seq peaks, considering
only the strongest TFBS per sequence. As we wanted to consider all the TFBS detected, I developed
a script that later became the tool position-analysis (see chapter 8) that can detect over and under
representation of TFBSs positionally constrained.

• Negative controls: We ran a negative control on every step of the workflow.

The combination of these programs showed a set of enriched TFs specifically on the Epromoters (and not in
the promoters with no enhancer activity). In addition, I also participated in the writing of the methods of
the manuscript.

13.3 Conclusion

The main contribution of this study to the current knowledge of the enhancers and promoters is that it
reveals a proportion of promoters displaying either local and distal regulation, by contrast to previous
studies showing isolated cases of promoters regulating distal genes.

The fact that many Epromoters are associated with stress response genes is in agreement with previously
validated enhancers associated to rapidly induced genes (e.g., viral immediate early genes, heat shock genes
and the anti-viral interferon genes) that are located near their associated TSSs (Schaffner, 2015). In ad-
dition, we also observed that the enhancer activity is not correlated with gene expression. However, both
observations supports the transcription factory model were genes are located closely to each other in order
to increase the concentration of regulatory factors or RNAP (Feuerborn and Cook, 2015), although for the
moment the possible contribution of Epromoters to transcription factories remains unknown.
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The fact that many Epromoters are related with interferon response, and even some of them displayed the
enhancer activity after interferon stimulation, suggests that the enhancer activity is condition-dependent and
the number of detected Epromoters might be underestimated. Future studies focused on specific stimulation
should be done in order to reveal novel Epromoters and regulatory mechanisms.

The results suggest that could be two classes of Epromoters: Epromoters displaying both enhancer and
promoter activity (e.g., regulating their associated and close genes) and Epromoters acting independently as
enhancer or as promoters.

The (cap)Starr-seq is a method useful to measure the enhancer activity based on the genomic properties
of the analyzed sequences (e.g., having binding sites for particular TFs)and not based on associations with
epigenomic features, as histone marks. The reported enhancers by this method are in agreement with the
original functional definition of enhancers, that is a cis-regulatory sequence capable of drive distally the
activation of a gene, independently of the orientation (Banerji et al., 1981). However is important to note
that many current studies consider as enhancers those regions associated to H3K27ac (Chatterjee and Ahituv,
2017; Heintzman et al., 2009), although it has been observed that when many of these regions are tested
using enhancer assays, they do not display the enhancer activity, even a same region can display enhancer
epigenomic features in one cell line and promoter features in other (Leung et al., 2015). In my opinion, the
functional definition should be respected for future analysis .

The (cap)Starr-seq method could be adapted in order to study silencers which are less studied and understood
in comparison to enhancers, and it could be used also to experimentally validate those enhancers defined by
histone marks and not functionally.

The large projects like this one require collaboration of several groups, for experiments and bioinformatics. In
regards with this thesis, here is an example of integration of results from several motif analysis tools through
a workflow that assures the reproductibility of the results. Furthermore, the development of position-analysis
is an example that bioinformatic tools should be developed side by side in collaboration with biologists and
bioinformaticians.
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Chapter 14

General discussions and prospects

14.1 The cis-regulatory code

Since decades, the identification of TF binding motifs and the identification of their targets genes through
the detection of TF binding sites, either in silico or experimentally, has represented a challenging step for the
understanding of regulatory networks. The in silico analysis of TF binding motifs is a field of bioinformatics
that has been developed since the 1980s, but is currently in fast development, as consequence of the large
amount of sequence data produced and the new insights about TF binding (e.g., DNA shape, interactions
between TFs and co-factors, genomic context).

In bacteria, the transcriptional regulatory networks have been built using the information of TFs and their
target genes (regulons), however, in more complex organisms, as metazoa, these information is not sufficient
to create such networks: in metazoa the transcriptional regulation is driven either from close and distal
(relative to TSSs) cis-regulatory regions, clusters of TFs bound, usually known as CRMs and the epigenetic
modifications. The combination of these elements orchestrate the transcriptional programs that give rise to
distinct cell types, developmental stages and distinct responses to environmental changes.

It has been demonstrated that cis-regulatory regions can still recruiting TFs and activating genes even outside
of their endogenous genomic context (van Arensbergen et al., 2016; Arnold et al., 2016; Dao et al., 2017),
this suggests that the information to drive the transcriptional programs is encoded in the DNA sequences
(Meireles-Filho and Stark, 2009), which accessibility for the TFs or other regulatory elements depends on
epigenomic mechanisms. Given these facts, it has been proposed the existence of a so-called cis-regulatory
code stating that the regulatory information follows a set of defined rules, regarding sequence composition
(e.g., GC content, enrichment of TF binding sites) and organization (e.g., the additive enhancer activity)
(Istrail and Davidson, 2005; Yáñez-Cuna et al., 2013).

The cis-regulatory code also includes the grammar (i.e., presence of certain TFs and their arrangements) in
the TF binding sites located at the cis-regulatory sequences. For example, although it has been observed that
certain enhancers require a set of specific TFs to activate genes and that functionally related enhancers use
to bind similar TFs (Erives and Levine, 2004; Lecellier et al., 2016), it has also been observed that generally
the order in which these TF are bound does not have an effect on the enhancer activity (Zinzen et al., 2009;
Igg et al., 2007), which is partially explained by motif re-arrangements during evolution (Schmidt et al.,
2010). The current view is that the combined input of TFs is more important than the binding site location
and orientation.

One of building blocks for transcriptional regulation, according to the cis-regulatory code are the TFBSs
(Figure 14.1a). Although usually the strongest ones are considered, it is demonstrated that low affinity
binding sites at cis-regulatory sequences may be key for gene regulation (Parker et al., 2011). In addition to
the affinity, the simple presence/absence of a given TF is not always and indicative of enhancer activity, it
has been shown that certain TFs use to work as pairs, for example forming heterodimers or acting as partner

105



106 CHAPTER 14. GENERAL DISCUSSIONS AND PROSPECTS

Figure 14.1: Cis-regulatory code: (a) the cis-regulatory sequences have the information to bind TFs that
will drive the transcriptional regulation of specific cell lines; (b) such TF combinations (grammar) may be
inferred using machine learning methods. Figure taken from Yanez-Cuna (2013),

factors (Heinz et al., 2010; Jolma et al., 2015), such conformation are of special interest to study particular
conditions, e.g., cell line or tissue specificity.

Given that the cis-regulatory code states that most of the transcriptional information is encoded on the
DNA, pattern recognition techniques based on machine learning (Tarca et al., 2007) combined with in silico
detection of TFBSs have been done in order to identify rules that may drive transcriptional regulation (Figure
14.1b), (Mathelier et al., 2016; Kelley et al., 2016; Whitaker et al., 2015), although given the complexity of the
transcriptional regulation, it is important to note that the TF binding depends on additional features such
chromatin accessibility, DNA nucleosome occupancy, presence of co-factors or DNA methylation. Considering
all of these features makes the study of such code, very hard to understand (Slattery et al., 2014).

14.2 Experimental and computational TFBS detection

The experimental methods to detect the binding preferences of TFs have rapidly evolved from low-throughput
(but precise) methods where the exact binding site is revealed, to high-throughput methods (e.g., ChIP-seq)
detecting genomic regions where the TF might be directly or indirectly bound and necessarily require further
computational analysis to detect the exact location of TFBSs.

In two studies, it was shown that ~60% of the ChIP-seq peaks published by ENCODE (Encode Consortium,
2012) do not contain a binding site for the immunoprecipitated TFs (the sites are detected in silico) (Worsley
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Hunt et al., 2014; Worsley Hunt and Wasserman, 2014). the remaining sequences are enriched by TFs related
to CTCF, ETS, JUN and THAP1. This observation suggests that the detection of these false positive peaks
might be a consequence of DNA open region (Yan et al., 2013; Teytelman et al., 2013) (e.g., peaks located
near cohesin-bound segments) rather than a bona fide binding event of the analyzed TF, other explanations
might be the indirect TF binding via protein-protein interactions or because the computational methods to
detect these peaks (peak-callers) are far from perfect (Castro-mondragon et al., 2016).

Regarding the in silico methods, the main problem is the trade-off between sensitivity and specificity. Even
here, it is not obvious that a medium-scoring site should be considered as a false positive. The TF might
be bound with lower affinity but still have some preferential binding for this site, and the site might become
relevant or not for regulation depending on interactions with other TFs within enhancers (Parker et al.,
2011).

The improvement of methods or the development of novel strategies to detect TFBSs is necessary not only to
reduce the large amount of false positive, but also because the detection of TFBSs is key for other methods
(e.g., motif enrichment) and now is becoming popular for the in silico detection of regulatory variants. Future
efforts may complement the detection of regulatory variants with the DNA shape and the tools should not
be limited to detect only regulatory SNPs, but also indels.

14.3 TF binding motifs representation

The representations of TF binding motifs have evolved from simple character strings (regular expression
or IUPAC consensus), PSSM for mono-nucleotides, models based on hidden markov models to the novel
di-PSSMs that model nucleotide interdependencies. Every generation of TF binding motifs incorporates
more information and therefore the models become more complex. The most recent models, the di-PSSMs
are available since 2013 but they are not widely used as the simpler mono-PSSMs. This could be due to
the fact that di-PSSMs require large TFBS sets to be built (whilst a mono-PSSM can be built from a
handful of and this requirement is not always feasible for some TFs (those with a low number of TFBSs
reported). Another possibility is that the the community does not dispose of sufficient elements to prove
that dinucleotide dependencies are crucial for many TFs, rather than for a very few selected cases, and that
there is thus no strong incentive to rewrite all the existing algorithms. Another reason is that the software
incorporating DNA features as DNAshape (Yang et al., 2014) and TFBSshape (Zhou et al., 2013) are simpler
than the di-PSSMs, since they require less features to model the TFBSs and the nucleotide interdependencies
are already considered, as consequence they became more popular and they are started to be used in recent
studies, (i.e., by combining motif scan predictions with DNA shape features), a recent study propose an
unifying model representing as logos either the nucleotide preferences and the DNA shape (Yang et al., 2017)
(Figure 14.2).

At this time there are two ongoing projects developing a novel representation of TF binding motifs, by
including a modified version of the IUPAC alphabet for DNA that includes the epigenetic modifications
of cytosine (Figure 14.3), see the following preprints: (Viner et al., 2016; Ngo and Wang, 2016). These
modifications may alter the TF binding on the DNA (Hu et al., 2013; Lercher et al., 2014). These new PSSM
models are represented as mono-PSSMs with new symbols for the modified cytosines. However in a recent
study using a novel method named Methyl-Selex, the authors have demonstrated that the binding preferences
(i.e., motifs) for hundreds of TFs may be slightly different when the motifs are built from sequences with and
without epigenomic modifications (e.g., 5mC, 5hmC) (Yin et al., 2017). Interestingly, for this publication
the authors use the mono-PSSM model, with no extended IUPAC alphabet for methylated cytosine. By
contrast, the method proposed by Viner and co-workers (with the extended IUPAC alphabet) requires to
known a priori the methylated cytosines, that can be detected with specialized bioinformatics tools (Viner
et al., 2016). For the moment, the study of methyl-sensitive TFs is limited to mono-PSSM and it should not
be surprising if further studies are focused on the study of DNA feature shapes in methylated sequences.

Similarly to the mono-PSSMs, the di-PSSM models are represented in distinct formats to compute the
nucleotide interdependencies, however they do not have a unified graphical representation as the logo for
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Figure 14.2: Representation of methylated motifs. (a) Stepwise epigenetic modifications of Cytosine. (b)
Expanded IUPAC alphabet for the C-methylation. (c) Examples of CEBP motifs with and without the
expanded IUPAC alphabet. Adapted from Viner (2016).

Figure 14.3: DNA sequence and shape logos. The DNA bound by two TFs with similar motifs has different
DNA shape properties. Minor groove width (MGW), Roll (R), propeller twist (ProT), and helix twist (HelT).
Adapted from Yang (2017).
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mono-PSSM in TRANSFAC, MEME or HOMER format; a standard representation should be accorded in
order to make these models more user-friendly.

Regarding the novel representations of PSSMs, my observation is that most of the recent publication involving
motif analysis show results based on simple methods, for example, either string-based or matrix-based on
mono-nucleotide frequencies, even when there is an increasing development of novel, more complex and more
precise methods (KULAKOVSKIY et al., 2013; Mathelier and Wasserman, 2013; Siebert and Johannes, 2016).
One reason could be that simple algorithms are faster, more popular and could be enough informative for some
purposes, as measure the enrichment of TFBSs, even it has been demonstrated that simple model are enough
to model most of the TFs (Zhao, 2013) and this is the reason that not all the TFs have their di-nucleotide
PSSMs in popular databases as JASPAR or HOCOMOCO (Ivan Kulakoskyi, personal communication).
However, I consider that the study of one specific TF, for example modelling the binding or considering the
flanking residues, that has been demonstrated that are important for the TF specificity (Jurk et al., 2016;
Slattery et al., 2014) should be done using a combination of the novel models (e.g., including nucleotide
interdependencies and DNA shape information). Another factor that I consider a reason because the di-
PSSMs are not widely used at this time is that there is not a suite as RSAT (Medina-Rivera et al., 2015)
or MEME (Bailey et al., 2015) including all the tools required for di-PSSM analysis (sequence retrieve,
background models, motif discovery, motif comparison, motif scan).

14.4 Redundancy in motif databases

As more motifs are discovered and stored in databases, their redundancy becomes an issue for the motif
analysis, and the clustering of motifs becomes a solution to ease the analysis for thousands of motifs in a
single study, either by grouping similar motifs or by producing non-redundant collections of motifs.

The idea of reduce motif redundancy in databases should be considered when there is more than one motif
for a particular TF, for example in cases when different motifs are obtained from different experiments as
ChIP-seq, PBM or SELEX, because the TF binding motifs may change if the binding sites were detected in
vitro or in vivo. But it should be noted that in most of the databases, the term non-redundant means that
there is only one motif per TF, although motifs corresponding to TFs from the same family use to be similar
(except the zinc fingers). By contrast in HOCOMOCO, a small number of TFs have two motifs associated
and that might be no similar.

Having one motif per TF is useful when the user is interested in a particular TF, so using the specific
motif will TF specificites as flanking residues at the TFBSs, that are underestimated in the Familial Binding
Profiles.

In order to find candidate TF potentially bound to a motif resulting from motif discovery, it is normally
compared with several motif collections (JASPAR, HOCOMOCO, Cis-BP, etc) that are redundant. If
the motifs are clustered a priori, the resulting non-redundant motif clusters can substitute those stored in
databases (for the purposes of comparison (Castro-Mondragon et al., 2017)). For example, if a cluster is made
by ten similar motifs, then the discovered motif should be compared once and not ten times, with a trade-
off between time efficiency (reducing the number of DB motifs to compare) but loss in precision (because
the cluster motif does not reflect all the particularities from the individual motifs). These non-redundant
collections may be obtained using RSAT matrix-clustering.

For the motif enrichment methods, since they are based on the detection of TFBSs and since similar motifs
are expected to detect the same TFBSs (Pape et al., 2008; Vorontsov et al., 2013), a collection of non-
redundant motif can be used to measure the enrichment in order to reduce the analysis time and to reduce
the multitesting correction factor applied to the enrichment p-values.
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14.5 Annotation of unknown TF binding motifs

The number of TFs in a genome has been estimated for several organisms as humans (Vaquerizas et al.,
2009; Weirauch et al., 2014) and Escherichia coli (Pérez-Rueda et al., 2015), including the already known
TF coding genes and putative TFs (predicted by homology of their DBD). For example in Escherichia coli
K12 there are ~300 TFs, from them ~90 are predicted and there is no knowledge about the experimental
conditions under which they are active nor about their DNA binding motifs. In humans, the number of
TFs is 1734 (according to Cis-BP (Weirauch et al., 2014)), higher than the number reported by a previous
study of human TFs (Vaquerizas et al., 2009). However, the number of TFBMs is larger than the number of
TFs. This can be explained because now it is available genome-wide information for TF binding at specific
conditions (e.g., cell-type and tissue specific) which has revealed novel motifs for some TFs.

In this thesis I clustered a large compendium of vertebrate motifs (~10,000 motifs from 12 databases) using
RSAT matrix-clustering (Castro-Mondragon et al., 2017), resulting in ~2,000 non-redundant motifs. This
reduction of the number of motifs by a factor of 5 can be explained because many TFs from the same family
have similar DNA affinities and the collections are redundant. In this analysis I detected hundreds of motifs
that are not similar to other known motifs but in other cases tens of highly similar motifs (e.g., Hox motifs)
are grouped in a cluster, which make us set the next question: how TFs elicit specific responses despite the
fact that many of them have the same motifs as other TFs? The answer comes partly from the interactions
between TFs in CRMs, the interaction with co-factors or condition-specific TFs (Slattery et al., 2011), but
more studies are required to have a better understanding of this question. In this analysis I also showed
that many motifs discovered by a tool, for example Epigram (Whitaker et al., 2015), or by consortia as the
FANTOM5 project (Andersson et al., 2014) have no match (i.e., are not similar) to any known motif, this
may suggest that these could be bona fide motifs for an uncharacterized TFs, but we should not discard the
possibility that these motifs might be either artifacts (e.g., false positives) of the motif discovery tools used
in these studies, or in the case of epigram, since its motifs were discovered in histone peaks only, they could
not necessarily correspond to TF binding affinities.

14.6 Differences between enhancers and promoters

For many years, the definitions of enhancers and promoters have remained as a dichotomy. The promoters
are defined as TSS-proximal regions that can activate gene transcription. Enhancers were originally defined
as regions that can activate gene transcription distally and independently of their orientation (Banerji et al.,
1981). In addition to the distance, others features have been associated specifically to enhancers and pro-
moters, for example histone marks (Heintzman et al., 2009; Chatterjee and Ahituv, 2017), as consequence,
many recent studies define the enhancers based on these marks. It is important to note that, indeed, there
are specifics histone marks associated with enhancers, but enhancers should be defined by operational cri-
teria and not by correlative observations. It is not surprising that some of these regions (i.e., enhancers
defined by correlation with histone marks) are not capable to activate gene transcription when they are
tested experimentally (Kheradpour et al., 2013; Vanhille et al., 2015; Inoue et al., 2016).

Given that enhancers and promoters share genomic and epigenomic similarities, recent studies have discussed
the differences between enhancers and promoters (Andersson, 2015; Schaffner, 2015), but two recently de-
veloped methods to quantify enhancer activity at genome-wide scale, Starr-seq (Arnold et al., 2013) and
CapStarr-seq (Vanhille et al., 2015), in flies and mammals (human and mouse), respectively, have detected
thousands of regions with enhancer activity, based on the operational criteria of enhancers only (i.e., activat-
ing genes distally); these studies have found that some regions with enhancer activity overlap at promoters.

In a recent study, where I contributed, using CapStarr-seq it was demonstrated that ~2-3% of human pro-
moters display enhancer activity (the enhancer-like regions overlapping at promoters, are actually promoters
acting as enhancers), and they are able to activate surrounding promoters. This novel class of cis-regulatory
sequences (promoters with enhancer activity) is denoted as Epromoters (Dao et al., 2017). These Epromoters
display distinctive epigenomic features related to enhancers, are enriched for motifs for Jun, Fos, YY and
IRF, and they are associated with stress-response genes.
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In this study, it was also shown that some promoters display enhancer activity after a stimulus (e.g., response
to interferon), which suggest that novel studies should be performed to discover cis-regulatory sequences
which activity is condition-dependent. In addition, this observation is in agreement with a study that
showed that some genomic regions have promoter-associated epigenomic features in one cell line and enhancer
features in other cell line (Leung et al., 2015).

Genome-wide enhancer assays can be used to validate predicted enhancers in different cell lines, based on
the sequences itself (Arnold et al., 2013; Vanhille et al., 2015), and although the enhancer activity of all
the genome can be analyzed in a single experiments, the main limitations of these enhancer reporter assays
is that the experiments are done outside their endogenous genomic context. However, the recent advent of
mediated mutagenesis techniques such as CRISPR-Cas9, allows the individual study of enhancer and the
effects of mutations and how they may affect the enhancer activity, for example mutation a TFBSs may
affect the interaction with another cis-regulatory region (Santiago-Algarra et al., 2017). Taking advantage
of these mediated mutagenesis technique will allow to study with more details the TF grammar and may
confirm the existence of the cis-regulatory code. Another use for these assays is that they could be adapted
to identify silencer at genome-wide scale.

14.7 Integrating analysis of TF binding regions with other
(epi)genomic features

It is important to remember that the transcriptional regulation driven by TFs is only one part of the gene
regulation mechanisms, the TF binding per se is not necessarily enough to determine whether the target
gene will be active or inactive. For this reason, in order to infer gene regulatory networks or test hypothesis
about regulatory mechanisms, the detection of TFBSs (by experimental or in silico methods) should be com-
plemented with information of open chromatin regions (e.g., searching ChIP-seq peaks overlapping DNAseI
sensitive sites) or chromatin interactions.

Combining these information, the false positive rate of computational methods to detect TFBSs can be
reduced and give robustness to the detected TFBSs. In addition, the location and quantification of histone
marks related with gene expression or RNAPII positioning can be used to annotate or detect cis-regulatory
regions as enhancer or promoters.

It should be considered that a predicted site can be a “true positive” (i.e., a functional site) in one tissue at
one developmental stage, and a “false positive” in another tissue, or in the same tissue at a different stage.
For this reason I think that “binding” is not an intrinsic property of a location in the genome (the “site”),
but is context-dependent.

Another feature that is more evident are the physical interaction between genomic regions given by the
3D conformation of the chromatin, in other words, regions that linearly seems to be distal, physically can
interact via chromatin loops.

Combining these evidences gives us a clearer but yet incomplete vision of transcriptional regulation, two of
the missing parts are the following:

• Time: most of the results are obtained at a fixed moment, giving us the idea of statics when in reality
the regulatory elements and the genome as well are highly dynamics. More time-series studies should
be done to understand the dynamics of the regulatory elements.

• TF-Target gene association: Evidences of TF binding at distal locations do not bring additional in-
formation about the regulated gene or the change of expression of target genes after the regulatory
interactions. In addition to locate the TF binding (e.g., with ChIP-seq), additional experiments detect-
ing chromatin conformation (e.g., interactions between RNAPII and enhancers) and gene expression
are helpful to detect the TF-Target gene interactions (Aerts et al., 2010), although this additional
information is not always available for most of the genomes and the chromatin accessibility changes
according the cell types.
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